135. The Subordination of Lévy System for Markov Processes

By Akihiko MIYAKE

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1969)

§1. Preliminary notions and the result. For each process x(t) belonging to a certain class of Markov processes, the Lévy measure n(x, dy) is defined as follows [1]:

(1)
$$\lim_{t \to +0} T_t f(x)/t = \lim_{t \to +0} \int_S f(y) P(t, x, dy)/t$$
$$= \int_S f(y) n(x, dy) \quad \text{for every } x \in D$$

where S and \hat{S} , are respectively, a locally compact Hausdorff space satisfying the 2nd axiom of countability and its one-point compactification, D is a bounded open set in S, and f is a function in $C(\hat{S})$ whose support does not intersect D. $\{T_t\}$ and $\{P(t, x, dy)\}$ respectively, are the semigroup and the transition functions of the process x(t), and the convergence in (1) is a bounded convergence in D.

We know that, when the time of such a Markov process is changed by a temporally homogeneous non-decreasing Lévy process h(t) which is independent of x(t) and has the Lévy measure $\dot{n}(t)$:

(2)
$$\dot{E}e^{rh(t)} = \exp\left[-t\left\{cr + \int_{0}^{\infty} (1 - e^{-ru})\dot{n}(du)\right\}\right]$$

 $c \ge 0, \quad \int_{0}^{\infty} \frac{u}{1+u}\dot{n}(du) < \infty,$

then the Lévy measure $\tilde{n}(x, dy)$ of the new Markov process is as follows [1]:

(3)
$$\tilde{n}(x, dy) = cn(x, dy) + \int_{0}^{\infty} P(t, x, dy)\dot{n}(dt).$$

Furthermore, for each process x(t) belonging to a wider class of Markov processes, that is, the class of Hunt processes with reference measures on S, the Lévy system (n(x, dy), A), the pair of a kernel n(x, dy) and an additive functional A(t) of x(t), is defined as a generalization of the Lévy measure defined above as follows [2]:

$$(4) \qquad E_x \sum_{s \le t} f(x(s-), x(s)) = E_x \left[\int_0^t \left\{ \int_{\hat{S}} f(x(s), y) n(x(s), dy) \right\} dA(s) \right]$$

where f is an $F(S \times \hat{S})$ -measurable non-negative function such that f(x, x) = 0 for any $x \in S$, and $F(S \times \hat{S})$ is the completion of the topological Borel field on $S \times \hat{S}$ with respect to the family of all bounded measures. If A(t) is the minimum of t and the life time of x(t), then