133. On Conservativity of Algebraic Function Fields

By Tetsuzo Kimura
Nippon Kogyo Daigaku
(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1969)

1. Let K be a field of algebraic functions of one variable over a field k of characteristic $p \neq 0$. Throughout this note, we assume that K is separable over k and k is algebraically closed in K. If the genus of K / k is invariant under any constant field extension of K / k, we say that K / k is conservative. E. Artin has proved that K / k is conservative if and only if for all finite purely inseparable constant field extensions \tilde{K} / \tilde{k} of K / k, the genus of K / k is equal to the genus of \tilde{K} / \tilde{k} (Chapter 15 of [1]).

Let K / k be as above, $M=\bigcup_{i=1}^{n} M_{i}$ a complete normal model of K / k, where M_{1}, \cdots, M_{n} are affine models defined by affine k-algebras A_{1}, \cdots, A_{n} respectively. Furthermore, we assume that each A_{i} is isomorphic to $k\left[X_{i 1}, \cdots, X_{i i_{i}}\right] / a_{i}$, where $k\left[X_{i 1}, \cdots, X_{i i_{i}}\right]$ is a polynomial ring and \mathfrak{a}_{i} is a prime ideal of $k\left[X_{i 1}, \cdots, X_{i l_{i}}\right]$. In this note, we fix a normal complete model M and a set of equations for M, i.e., the union $\bigcup_{i=1}^{n} B_{i}$ where $B_{i}=\left\{F_{i 1}(X), \cdots, F_{i s_{i}}(X)\right\}$ is a basis of \mathfrak{a}_{i}. Let Ω be the set of all coefficients in the equations belonging to the set of equations for $M, \Delta=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ a p-basis of $k^{p}(\Omega)$ over k^{p} and let $\Delta^{p^{-1}}=\left\{a_{1}^{p-1}, a_{2}^{p-1}\right.$, $\left.\cdots, a_{m}^{p-1}\right\}$. Then we have the following:

Theorem. K / k is conservative if and only if the genus of K / k is equal to the genus of $K\left(\Delta^{p-1}\right) / k\left(\Delta^{p-1}\right)$.

Remark. (1) We say that an algebraic function field \tilde{K} / \tilde{k} is a constant field extension of K / k if $\tilde{K}=\tilde{k} K$ and K is free from \tilde{k} over k. If we choose the above $a_{i}^{p-1}(i=1,2, \cdots, m)$ from a fixed complete field k^{*} which contains k, then we can construct the constant field extension $K\left(\Delta^{p-1}\right) / k\left(\Delta^{p-1}\right)$ of K / k by the method of Chevalley [2].
(2) Let M and $A_{i}(i=1,2, \cdots, m)$ be as stated above. Then the model of $K\left(\Delta^{p^{-1}}\right) / k\left(\Delta^{p-1}\right)$ defined by $k\left(\Delta^{p-1}\right)\left[A_{i}\right](i=1,2, \cdots, n)$ is denoted by $M \otimes k\left(\Delta^{p-1}\right)$ (to prove Theorem, we shall consider this model $M \otimes k\left(\Delta^{p^{-1}}\right)$ as a model over k). The geometric genus of M (resp. $M \otimes k\left(\Delta^{p-1}\right)$) is equal to the genus of K / k (resp. $K\left(\Delta^{p-1}\right) / k\left(\Delta^{p-1}\right)$) (cf. §6 of [4]).
(3) By a differential constant field for M (or K / k), we mean a field k_{0} which satisfies the following three conditions:

