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1. We consider bounded linear operators on a Hilbert space H.
Denote by a(T), ap(T), at(T), ac(T) the spectrum, the point spectrum,
the residual spectrum and the continuous spectrum respectively, by
W(T)--{(Tx, x)" x l--1} the numerical range. It is known [3] that
W(T) is convex and conv a(T)cl W(T) (conv-- convex hull, cl-- closure).
An operator T is said to be hyponormal i. T*T-- TT* >_ O, or equiva-
lently if T*xll<_llTxll or every x e H. As in [1] an operator is said
to be restriction-convexoid (reduction-convexoid) i the restriction of
T to every invariant (invariant under T and T*) subspace is convexoid,
where convexoid means that conv a(T)--cl W(T).

In this Note we give some theorems on structure of hyponormal
and restriction-convexoid operators whose spectrum lies on a convex
curve.

2. Our main result in this section is
Theorem 1. If T is a hyponormal operator and has the following

properties
1 Tp--ST*S-I+C for some S for which 0ecl W(S) and

C- compact operator

2 if [, 2 e a(T), 1+-- + + + =/=0

then T is a normal operator.
For the proo we need the ollowing
Lemma 1. If T is a hyponormal operator which is the sum of a

self-ad]oint operator A and a compact operator C, then T is a normal
operator.

Proof. We denote by a*(T) the set of complex numbers 2 such
that T--2I has a continuous inverse and that the range of T--2I is not
dense in H and a*(T) is the set of complex numbers 2 which does not
belong to a(T) and or which there exists a sequence {x} o unit
vectors in H such that TXn--,Xn -0 as n-c.

Since T is hyponormal it is known that T can be expressed
uniquely as a direct sum T--TT defined on a product space
H--HH. where H is spanned by all the proper vectors o T such
that" (a) T is normal and a(T)--cl a(T), (b) T is hyponormal and
a(T)--, (c) T is normal if and only i T is normal.


