128. On Some Properties of A^p(G)-algebras^{*}

By Hang-Chin LAI

Mathematical Institute Tohoku University, Sendai and Institute of Mathematics National Tsig Hua University, Taiwan China

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

1. Introduction. Let G be a locally compact abelian group with dual group \hat{G} . We denote dx and $d\hat{x}$ the Haar measures of G and \hat{G} respectively. Recently, Larsen, Liu, and Wang [4] have investigated a space $A^{p}(G)$ consisting of all complex-valued functions $f \in L^{1}(G)$ whose Fourier transforms \hat{f} belong to $L^{p}(\hat{G})$ $(p \ge 1)$. In this paper, we shall show further investigations of the algebra $A^{p}(G)$ proving the existence of the approximate identities of $A^{p}(G)$ and using the approximate identity to give a reproof of Theorem 5 in [4]. We show also that the closed primary ideal of $A^{p}(G)$ is maximal.

2. The approximate identities of $A^{p}(G)$ -algebras. It is clear that $A^{p}(G)$ is an ideal dense in $L^{1}(G)$ under convolution. Indeed, for any $f \in A^{p}(G)$ and $g \in L^{1}(G)$,

$$\|\widehat{f*g}\|_p \leqslant \|\widehat{g}\|_{\infty} \|\widehat{f}\|_p$$

proving $f * g \in A^p(G)$ and the density of $A^p(G)$ in $L^1(G)$ follows from the fact that if $\{e_{\alpha}\}$ is an approximate identity in $L^1(G)$ whose Fourier transforms have compact supports then $e_{\alpha} \in A^p(G)$ and for an arbitrary function $f \in L^1(G)$ we have

$$f \ast e_{\alpha} \in A^{p}(G) \text{ and } \| f \ast e_{\alpha} - f \|_{1} \rightarrow 0.$$
 Define the norm of $f \in A^{p}(G)$ $(1 \leq p < \infty)$ by

 $\|f\|^{p} = \|f\|_{1} + \|\hat{f}\|_{p}$ where $\|f\|_{1} = \int_{g} |f(x)| dx$ and $\|\hat{f}\|_{p} = \left(\int_{\hat{g}} |\hat{f}(\hat{x})|^{p} d\hat{x}\right)^{1/p}$. Then $A^{p}(G)$ is a commutative Banach algebra under convolution as its product and with the norm $\|\cdot\|^{p}$ (see [4; Theorem 3]).

We say here an approximate identity for $A^{p}(G)$ a family $\{e_{a}\}$ of functions in $A^{p}(G)$ such that for any $f \in A^{p}(G)$ and $\varepsilon > 0$, there exists $e_{a} \in \{e_{a}\}$ such that $||e_{a}*f-f||^{p} < \varepsilon$.

Theorem 1. The Banach algebra $A^{p}(G)$ has an approximate identity with the properties that it is also the bounded approximate identity for $L^{1}(G)$ and whose Fourier transform has compact support in \hat{G} .

Proof. By Rudin [7] Theorem 2.6.6, we see that there is a

^{*)} This research was supported by the Mathematics Research Center, National Science Council, Taiwan, Republic of China.