115. On the Schur Index of a Monomial Representation

By Toshihiko Yamada
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1969)

In this note we give a method of determing the Schur index of a monomial representation of a finite group which is induced from a linear character of its normal subgroup. At the same time we obtain some other results which are useful in the theory of Schur index.

Notation and Terminology. G denotes a finite group whose unit element is $1 .|G|$ is the order of $G \cdot K$ is any given field of characteristic 0 and Ω the algebraic closure of K. An irreducible character χ of G always means an absolute one afforded by a representation of the group algebra ΩG over $\Omega . \quad m_{K}(\chi)$ is the Schur index of χ over $K . K(\chi)$ is the field obtained from K by adjunction of all values $\chi(g), g \in G$. ${ }^{(S)}(K(\chi) / K)$ is the Galois group of $K(\chi)$ over K. For $\tau \in \mathbb{G}(K(\chi) / K), \chi^{\tau}$ is the character of G defined by $\chi^{\tau}(g)=\chi(g)^{\tau} . e(\chi)=|G|^{-1} \chi(1) \sum_{g \in G} \chi\left(g^{-1}\right) g$ is the minimal central idempotent of ΩG corresponding to χ. $a(\chi)$ $=\sum_{\tau \in\left(\int \mid K(x) / K\right)} e\left(\chi^{\tau}\right)$ is the identity of the simple component A of $K G$ with the property $\chi(A) \neq 0[2, \mathrm{~V}, 14.12]$. If H is a subgroup of G and ψ a character of H, ψ^{G} denotes the character of G induced from ψ. For a ring R and an integer n, R_{n} is the total matric algebra of degree n over R.

Lemma. Let H be a subgroup of G and $H g_{1}, \cdots, H g_{n}$ all the distinct right cosets of H in G. Let ψ be an irreducible character of H such that ψ^{G} is irreducible. For simplicity, set $e_{i}=g_{i}^{-1} e(\psi) g_{i}(i=1, \ldots$ $\cdots, n)$. Then we have (i) $e\left(\psi^{G}\right)=\sum_{i=1}^{n} e_{i}$, (ii) $e\left(\psi^{G}\right) \Omega G=e_{1} \Omega G+\cdots+e_{n} \Omega G$, (iii) $e_{i} e_{j}=0(i \neq j), e_{i} e_{i}=e_{i}, 1 \leq i, j \leq n$, (iv) $\left(\psi^{\tau}\right)^{G}=\left(\psi^{G}\right)^{\tau}$ for any $\tau \in \mathbb{E}$ $(K(\psi) / K)$.

Proof. (i) $e\left(\psi^{G}\right)=|G|^{-1} \psi^{G}$ (1) $\sum_{g \in G} \psi^{G}\left(g^{-1}\right) g=|H|^{-1} \psi$ (1) $\sum_{g \in G}$

$$
\sum_{i=1}^{n} \psi\left(g_{i} g^{-1} g_{i}^{-1}\right) g=\sum_{i=1}^{n} g_{i}^{-1}\left\{|H|^{-1} \psi(1) \sum_{n \in H} \psi\left(h^{-1}\right) h\right\} g_{i}=\sum_{i=1}^{n} e_{i},
$$

where $\psi(g)=0$ for $g \notin H$. (ii) It can be easily seen that $e(\psi) \Omega G \simeq e_{i} \Omega G$ ($i=1, \cdots, n$) as right ΩG-modules and that $\operatorname{dim}_{\Omega} e(\psi) \Omega G=n \psi(1)^{2}$ and that $e\left(\psi^{G}\right) \Omega G \subset e_{1} \Omega G+\cdots+e_{n} \Omega G$. Hence, $(n \psi(1))^{2}=\operatorname{dim}_{\Omega} e\left(\psi^{G}\right) \Omega G$ $\leq \operatorname{dim}_{\Omega}\left\{e_{1} \Omega G+\cdots+e_{n} \Omega G\right\} \leq n^{2} \psi(1)^{2}$. This proves (ii). (iii) We observe that $e_{i}=e\left(\psi^{G}\right) e_{i}=e_{1} e_{i}+\cdots+e_{i} e_{i}+\cdots+e_{n} e_{i}$. Since $e_{1} \Omega G+\cdots+e_{n} \Omega G$ is a direct sum, it follows that $e_{i} e_{j}=0 \quad(i \neq j), e_{i} e_{i}=e_{i}$.

