115. On the Schur Index of a Monomial Representation

By Toshihiko YAMADA

Department of Mathematics, Tokyo Metropolitan University (Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1969)

In this note we give a method of determing the Schur index of a monomial representation of a finite group which is induced from a linear character of its normal subgroup. At the same time we obtain some other results which are useful in the theory of Schur index.

Notation and Terminology. G denotes a finite group whose unit element is 1. |G| is the order of $G \cdot K$ is any given field of characteristic 0 and Ω the algebraic closure of K. An irreducible character χ of G always means an absolute one afforded by a representation of the group algebra ΩG over Ω . $m_K(\chi)$ is the Schur index of χ over K. $K(\chi)$ is the field obtained from K by adjunction of all values $\chi(g)$, $g \in G$. $\mathfrak{G}(K(\chi)/K)$ is the Galois group of $K(\chi)$ over K. For $\tau \in \mathfrak{G}(K(\chi)/K)$, χ^{τ} is the character of G defined by $\chi^{\tau}(g) = \chi(g)^{\tau}$. $e(\chi) = |G|^{-1}\chi$ (1) $\sum_{g \in G} \chi(g^{-1})g$ is the minimal central idempotent of ΩG corresponding to χ . $a(\chi) = \sum_{\tau \in \mathfrak{G}(K(\chi)/K)} e(\chi^{\tau})$ is the identity of the simple component A of KG with the property $\chi(A) \neq 0$ [2, V, 14. 12]. If H is a subgroup of G and ψ a character of H, ψ^G denotes the character of G induced from ψ . For a ring G and an integer G0, G1, G2 is the total matric algebra of degree G1 over G2.

Lemma. Let H be a subgroup of G and Hg_1, \dots, Hg_n all the distinct right cosets of H in G. Let ψ be an irreducible character of H such that ψ^G is irreducible. For simplicity, set $e_i = g_i^{-1}e(\psi)g_i$ $(i=1, \dots, n)$. Then we have (i) $e(\psi^G) = \sum_{i=1}^n e_i$, (ii) $e(\psi^G)\Omega G = e_1\Omega G + \dots + e_n\Omega G$, (iii) $e_ie_j = 0$ $(i \neq j)$, $e_ie_i = e_i$, $1 \leq i$, $j \leq n$, (iv) $(\psi^G)^G = (\psi^G)^G$ for any $\tau \in \mathfrak{G}$

$$(K(\psi)/K).$$
 Proof. (i) $e(\psi^G) = |G|^{-1}\psi^G$ (1) $\sum_{g \in G} \psi^G(g^{-1})g = |H|^{-1}\psi$ (1) $\sum_{g \in G}$

$$\textstyle \sum_{i=1}^n \psi(g_ig^{-1}g_i^{-1})g = \sum_{i=1}^n g_i^{-1} \{\, |\, H|^{-1}\psi \ (1) \sum_{h \in H} \psi(h^{-1})h \}g_i = \sum_{i=1}^n e_i,$$

where $\psi(g)=0$ for $g \notin H$. (ii) It can be easily seen that $e(\psi)\Omega G \simeq e_i\Omega G$ $(i=1,\cdots,n)$ as right ΩG -modules and that $\dim_{\mathcal{Q}} e(\psi)\Omega G = n \ \psi(1)^2$ and that $e(\psi^G)\Omega G \subset e_1\Omega G + \cdots + e_n\Omega G$. Hence, $(n \ \psi \ (1))^2 = \dim_{\mathcal{Q}} e(\psi^G)\Omega G \leq \dim_{\mathcal{Q}} \{e_1\Omega G + \cdots + e_n\Omega G\} \leq n^2 \psi \ (1)^2$. This proves (ii). (iii) We observe that $e_i = e(\psi^G)e_i = e_1e_i + \cdots + e_ie_i + \cdots + e_ne_i$. Since $e_1\Omega G + \cdots + e_n\Omega G$ is a direct sum, it follows that $e_ie_j = 0$ $(i \neq j)$, $e_ie_j = e_i$.