157. Mixed Problems for Degenerate Hyperbolic Equations of Second Order

By Akira NAKAOKA

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

1. Introduction. In this note we shall deal with the following equation:

(1.1)
$$u_{tt} = p(x)u_{xx} + f(x, t)$$

in $R_+^1 \times (0, \infty)$, where p(x) is a real valued function such that;

(i) $p(x) \in C^{0}(\bar{R}^{1}_{+})$ and $0 \leq p(x)$ (p(x) never vanishes except at x=0)

(ii) for $x \to \infty$, p(x) remains bounded, and moreover bounded away from zero

(iii) $p(x)^{-1}$ is summable in the neighborhood of the origin.

Our boundary conditions are as follows:

Case I u=0 at x=0

Case II $u_x + hu = 0$ at x = 0 (h is a real number).

Since (1.1) is not strictly hyperbolic, we might not expect the mixed problems with above boundary conditions be L^2 -well-posed, but we can show that our problem is well suited on a certain function (Hilbert) space.

2. Function spaces $L^2(\mathbb{R}^1_+, p^{-1})$ and $H^2(\mathbb{R}^1_+, p)$. In this section we establish two function spaces in which we develop our arguments.

Definition 2.1. A distribution u(x) on R_+^1 is said to be in $L^2(R_+^1, p^{-1})$, if and only if

(2.1)
$$||u||_{p^{-1}}^2 = \int_0^\infty |u|^2 p^{-1} dx$$

is finite.

Definition 2.2. A distribution u(x) on R_+^1 is said to be in $H^2(R_+^1, p)$, if and only if

(2.2)
$$||u||_{2,p}^{2} = \int_{0}^{\infty} (|u|^{2} + p(x)|u_{xx}|^{2}) dx$$

is finite.

Lemma 2.3. If u(x) belongs to $H^2(\mathbb{R}^1_+, p)$, then $u_x(0) = \lim u_x(x)$ exists and

(2.3)
$$|u_x(0)|^2 \leqslant \varepsilon \int_0^\infty p(x) |u_{xx}|^2 dx + C(\varepsilon) \int_0^\infty |u|^2 dx$$

is valid for any positive ε .

Lemma 2.4. If u(x) is in $H^2(R^1_+, p)$, then u(x) is in $H^1(R^1_+)$ and (2.4) $\int_0^\infty |u_x|^2 dx \le \varepsilon \int_0^\infty p(x) |u_{xx}|^2 dx + C(\varepsilon) \int_0^\infty |u|^2 dx$