155. Representation of Certain Banach *-algebras*)

By Noboru SUZUKI

Department of Mathematics, University of British Columbia, Vancouver, Canada

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

Let A be a Banach *-algebra satisfying the condition: there exists a positive constant α such that

$$\alpha \|x^*\| \|x\| \le \|x^*x\|$$

for every x in A. The problem to realize such a Banach *-algebra as a C*-algebra has been left to be solved after I. Kaplansky [3] asked whether or not every C-symmetric Banach *-algebra is symmetric. In the case when A is commutative, R. Arens [1] had proven that it is a B^* -algebra under an equivalent norm, and then B. Yood [8] gave a partial answer to this problem by showing that a Banach *-algebra with the above condition is a B^* -algebra under an equivalent norm if $\alpha > c$ (c; the unique real root of the equation $4t^3 - 2t^2 + t - 1 = 0$).

The purpose of this note is to inform that this problem has been solved in the affirmative, and is to give a brief account of the proof. Our result is the following.

Theorem. Let A be a Banach *-algebra whose norm satisfies the condition $\alpha ||x^*|| ||x|| \le ||x^*x||$. Then it is homeomorphic and *-isomorphic to a C*-algebra.

By a B^* -algebra, we shall mean a Banach *-algebra with the condition $||x^*x|| = ||x||^2$. At the present time, it is well known that a B^* -algebra is isometrically *-isomorphic to a C^* -algebra, a uniformly closed *-algebra of operators on Hilbert space.

Throughout this paper we shall consider a (complex) Banach *-algebra with unit e (the case without unit will be mentioned at the final step). Here we present a concise proof of the theorem which proceeds by stages. In the course of the representation of B^* -algebras (see the theorem of Fukamiya and Kaplansky [7; Theorem 4.8. 11], T. Ono [6] and J. Glimm-R. V. Kadison [2]), the problem one discussed for a long time was to extend the local C^* -property to the global one. Concerning our problem we are in the same situation as the case of B^* -algebras because Arens [1] tells us that our Banach *-algebras provide the local C^* -property. To clarify the essence of the proof we introduce a class of Banach *-algebras as follows. A Banach *-algebra

^{*)} This work was done while the author was offering a Functional Analysis Seminar at the University of British Columbia in 1969.