151. On Wiener Compactification of a Riemann Surface Associated with the Equation $\Delta u = pu$

By Hidematu TANAKA
Mathematical Institute, Nagoya University
(Comm. by Kinjirô Kunugi, M. J. A., Oct. 13, 1969)

1. We consider an elliptic partial differential equation

$$\Delta u = pu$$

on a Riemann surface R, where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ and p is a non-negative and continuously differentiable function of local parameters z such that the expression $p(z) |dz|^2$ is invariant under the change of local parameters z. We call such a function p a density on R.

The investigation of the global theory of (*) was begun by M. Ozawa [8] and continued by many others (for example, L. Myrberg [4], H. L. Royden [9], M. Nakai [5] [6] and F. Maeda [3]).

Associated with the equation (*), Wiener functions and the Wiener compactification R_{wp}^* of R are discussed; more generally the Wiener compactification of harmonic spaces is studied by C. Constantinescu and A. Cornea [2]. In this note we shall examine how the Wiener compactification depends on a density p, and we shall give the following result (Theorem 4); If p and q are two densities on R satisfying

(I)
$$\alpha^{-1}q$$

on R for some constant $\alpha \ge 1$, or

(II)
$$\iint_{R} |p(z) - q(z)| \ dx dy < \infty$$

then there exists a homeomorphism Φ^* of $R_{W^p}^*$ onto $R_{W^q}^*$ such that $\Phi^*(\Gamma_{W^p}) = \Gamma_{W^q}$, where Γ_{W^p} (or Γ_{W^q}) is a harmonic boundary of $R_{W^q}^*$ (or $R_{W^q}^*$).

- 2. Let Ω be an open subset of a Riemann surface R. A function u on Ω is called p-harmonic on Ω if u is twice continuously differentiable and satisfies (*). A p-superharmonic function is defined as usual (see [3]). We know that a twice continuously differentiable function s on Ω is p-superharmonic on Ω if and only if $\Delta s ps \le 0$ on Ω . Let a be an arbitrary point on R. L. Myrberg [4] proved that if $p \not\equiv 0$, there exists always the Green function of R with pole at a for the equation (*). We denote it by $g_{p}^{P,R}$.
- 3. A real-valued function f on R is called a p-Wiener function when f is quasicontinuous and has a p-superharmonic majorant and