# 145. On the Class Number of an Absolutely Cyclic Number Field of Prime Degree 

By Norio Adachi<br>Department of Mathematics, Tokyo Institute of Technology, Tokyo

(Comm. by Zyoiti Suetuna, m. J. a., Oct. 13, 1969)

Let $K$ be a cyclic extension of odd prime degree $p$ over $\boldsymbol{Q}$, and suppose that 2 is a primitive root $\bmod p . \quad p$ may be, for example, 3 , $5,11,13,19$ or 29 . We shall prove that the class number $h$ of $K$ is even, if and only if a cyclotomic unit $\eta$ of $K$ is either totally positive or totally negative, i.e. $|\eta|$ is totally positive. We shall also show that $|\eta|$ is not totally positive, if the discriminant of $K$ is a power of prime. Hence, in such a case, we can conclude that the class number $h$ of $K$ is odd.
§1. On cyclotomic units.
In order to prove our results, we first recollect some properties of cyclotomic units, which are described in [3] with thorough proofs.

Let $K$ be a cyclic extension of odd prime degree $p$ over $\boldsymbol{Q}$. Then, it is well known that $K$ is cyclotomic, that is, $K$ is contained in $\boldsymbol{Q}_{m}=\boldsymbol{Q}\left(\zeta_{m}\right)$ for some $m$. Here, and in what follows, $\zeta_{m}$ denotes

$$
\cos \frac{2 \pi}{m}+i \sin \frac{2 \pi}{m} .
$$

Let $f$ be the greatest common divisor of $m$ 's such that $\boldsymbol{Q}_{m} \supset K$. Then, $K$ is contained in $\boldsymbol{Q}_{f}$. Note that a prime number is ramified in $K$, if and only if it divides $f$. For any integer $a$ which is prime to $f$, we define the element $i(\alpha)$ of the Galois group $G\left(\boldsymbol{Q}_{f} / \boldsymbol{Q}\right)$ by

$$
\zeta_{f}^{i(a)}=\zeta_{f}^{a} .
$$

Then the map

$$
a \mapsto i(a)
$$

induces an isomorphism of the multiplicative group $\boldsymbol{Z}_{f}^{\times}$of reduced residue classes $\bmod f$ onto $G\left(\boldsymbol{Q}_{f} / \boldsymbol{Q}\right)$. We will use the same notation $i(a)$ for this isomorphism. In general, we will write $a$ for the class of $a \bmod f$. Denote by $i_{K}(\alpha)$ the element of $G(K / Q)$ which is induced by $i(a)$. Then, the map

$$
a \mapsto i_{K}(a)
$$

induces a homomorphism of $\boldsymbol{Z}_{f}^{\times}$onto $G(\boldsymbol{K} / \boldsymbol{Q})$. We denote by $H$ the kernel of this homomorphism. Since $K$ is real, all elements of $K$ are invariant by $\zeta_{f} \mapsto \zeta_{f}^{-1}$. Hence, -1 is contained in $H$. We take a subset $A$ of $H$ such that $A \cup\{-a ; a \in A\}=H$, and $A \cap\{-a ; a \in A\}=\varnothing$. Let $s$

