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Let K be a cyclic extension of odd prime degree p over Q, and
suppose that 2 is a primitive root mod p. p may be, for example, 3,
5,11, 13, 19 or 29. We shall prove that the class number & of K is
even, if and only if a cyclotomic unit 5 of K is either totally positive
or totally negative, i.e. |9] is totally positive. We shall also show that
|7| is not totally positive, if the discriminant of K is a power of prime.
Hence, in such a case, we can conclude that the class number 2 of K
is odd.

§1. On cyclotomic units.

In order to prove our results, we first recollect some properties
of cyclotomic units, which are described in [8] with thorough proofs.

Let K be a cyclic extension of odd prime degree p over Q. Then,
it is well known that K is cyclotomic, that is, K is contained in
0.,.=0(,,) for some m. Here, and in what follows, {,, denotes

cos 2 +18in 2—”

m m
Let f be the greatest common divisor of m’s such that Q,, DK. Then,
K is contained in Q,. Note that a prime number is ramified in K, if
and only if it divides f. For any integer a which is prime to f, we
define the element i(a) of the Galois group G(Q,/Q) by

C?(a) — C? .
Then the map

a— i(a)
induces an isomorphism of the multiplicative group Z of reduced
residue classes mod f onto G(Q,/Q). We will use the same notation
i(a) for this isomorphism. In general, we will write a for the class of
a mod f. Denote by ig(a) the element of G(K/Q) which is induced by
#(a). Then, the map

a > ix(a)
induces a homomorphism of Z} onto G(K/Q). We denote by H the
kernel of this homomorphism. Since K is real, all elements of K are
invariant by {,—~{;'. Hence, —1iscontained in H. We take a subset
A of H such that AU{—a;acA}=H, and AN{—a;aec A}=90. Let s



