144. A Class of Markov Processes with Interactions. $I^{1)}$

By Tadashi Ueno
University of Tokyo and Stanford University

(Comm. by Zyoiti Suetuna, m. J. A., Oct. 13, 1969)

Here, we consider a motion of one particle under the interactions between an infinite number of similar particles. Each particle moves independently in a Markovian way until an exponential jumping time comes, and it jumps with a hitting measure which depends on other particles. A model, where the jumping time also depends on other particles, is discussed under auxiliary conditions. These results extend [9].

The models here came into our interest through the works of McKean [3-5], which started with Kac's model of Boltzmann equation [2].

1. Let $P(s, x, t, E)$ be a transition probability on a locally compact space R with countable bases and topological Borel field $\boldsymbol{B}(R)$. Assume $P(s, x, t, R) \equiv 1$ and
(1) $\quad P(s, x, t, U) \rightarrow 1, \quad$ as $t-s \rightarrow 0$, for open U containing x. Let $q(t, y)$ be a non-negative, measurable function, bounded on compact (t, y)-sets. Define

$$
\begin{equation*}
P_{0}(s, x, t, E)=E_{s, x}\left(\exp \left[-\int_{s}^{t} q\left(\sigma, X_{o}(w)\right) d \sigma\right] \chi_{E}\left(X_{t}(w)\right)\right) \tag{2}
\end{equation*}
$$

where $X_{t}(w)$ is a measurable Markov process with transition probability $P(s, x, t, E) . \quad E_{s, x}(\cdot)$ is the expectation conditioned that the particle starts at x at time s. This set up is possible by (1). Let $q_{n}(t, y)$, $n=0,1, \cdots$ be non-negative, measurable and $q(t, y) \equiv \sum_{n=0}^{\infty} q_{n}(t, y)$, and let $\pi_{n}\left(y_{1}, \cdots, y_{n} \mid t, y\right)$ be probability measures on $(R, \boldsymbol{B}(R)$), measurable in ($y_{1}, \cdots, y_{n}, t, y$) for fixed $E \in \boldsymbol{B}(R) .{ }^{2)}$

Consider a forward equation and a version of backward equation: (3) $P^{(f)}(s, x, t, E)$

$$
\begin{aligned}
= & P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R} P^{(f)}(s, x, \tau, d y) \sum_{n=0}^{\infty} q_{n}(t, y) \int_{R^{n}} \prod_{k=1}^{n} P_{s, \tau}^{(f)}\left(d y_{k}\right) \\
& \times \int_{R} \pi_{n}\left(y_{1}, \cdots, y_{n} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E),{ }^{3)}
\end{aligned}
$$

[^0]
[^0]: 1) Research supported in part by the National Science Foundation, contract NSF GP 7110, at Stanford University, Stanford, California.
 2) For the intuitive meanings of the quantities, the reader can consult [9].
 3) The 0 -th term of the sum is $q_{0}(\tau, y) \int_{R} \pi_{0}(\tau, y, d z) P_{0}(\tau, z, t, E)$.
