By Yoichi MOTOHASHI

Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo

(Comm. by Zyoiti SUETUNA, M. J. A., Oct. 13, 1969)

Erdös [1] proved in an ingenious manner that the density of the integers having a divisor between n and 2n tends to zero as n tends to infinity.

The purpose of this short note is to prove that the same fact holds for the sequence $\{p-1\}$, where p denotes a prime. More precisely we shall prove the following

Theorem. The density, with respect to the sequence of all primes, of the prime p such that p-1 has a divisor between n and n $\exp(h^{-1}(n) \log \log n)$ tends to zero as n tends to infinity, where h(n) is an arbitrary increasing function such that $h(n) \rightarrow \infty$ and $h^{-1}(n) \log \log n \rightarrow \infty$ as $n \rightarrow \infty$.

For the proof of the theorem we need three lemmas:

Lemma 1. Let $\omega(m)$ be the number of all prime divisors of m. Then, if $1/2 \le a \le 1$, we have

$$\sum_{\substack{n \le m \le n \exp(h^{-1}(n)\log\log n) \\ \omega(m) \le \alpha \log \log n}} m^{-1} = 0\{\log^{\sigma_{\alpha}-1}n \log \log n\},\$$

where $\gamma_a = a - a \log a$.

This is a trivial modification of Lemma 7 of Hooley [2].

Lemma 2. Let $\omega_n(m)$ be the number of all prime divisors less than n of m. Then for $n \leq \log x$ we have

$$\sum_{\substack{n \leq x}} (\omega_n(p-1) - \log \log n)^2 = 0(\pi(x) \log \log n),$$

where $\pi(x)$ is the number of primes not exceeding x.

Lemma 3. If c and n are less than $\log x$, then we have

$$\sum_{\substack{p \leq x \\ \text{sl(mod c)}}} \left(\omega_n \left(\frac{p-1}{c} \right) - \log \log n \right)^2 = 0 \left(\frac{\pi(x)}{\varphi(c)} \log \log n \right),$$

where $\varphi(c)$ is the Euler function.

Above two lemmas are easy applications of the Siegel-Walfisz Theorem [3, Satz 8.3].

Proof of the theorem. As in [1] we divide the integers lying between n and $n \exp(h^{-1}(n) \log \log n)$ into two classes. Namely, in the first class we put the integers b_1, b_2, \dots, b_y having at most $\frac{2}{3} \log \log n$ prime divisors and in the second class the integers c_1, \dots, c_z having more than $\frac{2}{3} \log \log n$ prime divisors.