143. On a Property of $p-1$

By Yoichi Motohashi
Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo

(Comm. by Zyoiti Suetuna, m. J. A., Oct. 13, 1969)

Erdös [1] proved in an ingenious manner that the density of the integers having a divisor between n and $2 n$ tends to zero as n tends to infinity.

The purpose of this short note is to prove that the same fact holds for the sequence $\{p-1\}$, where p denotes a prime. More precisely we shall prove the following

Theorem. The density, with respect to the sequence of all primes, of the prime p such that $p-1$ has a divisor between n and n $\exp \left(h^{-1}(n) \log \log n\right)$ tends to zero as n tends to infinity, where $h(n)$ is an arbitrary increasing function such that $h(n) \rightarrow \infty$ and $h^{-1}(n) \operatorname{loglog}$ $n \rightarrow \infty$ as $n \rightarrow \infty$.

For the proof of the theorem we need three lemmas:
Lemma 1. Let $\omega(m)$ be the number of all prime divisors of m. Then, if $1 / 2 \leq a<1$, we have

$$
\sum_{\substack{n \leq m \leq n \exp (n-1(n) \log \log n) \\ \omega(m) \leq \alpha \log \log n}} m^{-1}=0\left\{\log ^{\sigma_{\alpha-1}} n \log \log n\right\},
$$

where $\gamma_{a}=a-a \log a$.
This is a trivial modification of Lemma 7 of Hooley [2].
Lemma 2. Let $\omega_{n}(m)$ be the number of all prime divisors less than n of m. Then for $n \leq \log x$ we have

$$
\sum_{p \leq x}\left(\omega_{n}(p-1)-\log \log n\right)^{2}=0(\pi(x) \log \log n),
$$

where $\pi(x)$ is the number of primes not exceeding x.
Lemma 3. If c and n are less than $\log x$, then we have

$$
\sum_{\substack{p \leq x \\ p \equiv 1(\bmod c)}}\left(\omega_{n}\left(\frac{p-1}{c}\right)-\log \log n\right)^{2}=0\left(\frac{\pi(x)}{\varphi(c)} \log \log n\right),
$$

where $\varphi(c)$ is the Euler function.
Above two lemmas are easy applications of the Siegel-Walfisz Theorem [3, Satz 8.3].

Proof of the theorem. As in [1] we divide the integers lying between n and $n \exp \left(h^{-1}(n) \log \log n\right)$ into two classes. Namely, in the first class we put the integers $b_{1}, b_{2}, \cdots, b_{y}$ having at most $\frac{2}{3} \log \log n$ prime divisors and in the second class the integers c_{1}, \cdots, c_{z} having more than $\frac{2}{3} \log \log n$ prime divisors.

