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Totoki [6] has shown that strongly mixing Gaussian flows are all
order mixing. As is well-known, the all order mixing implies the
weak mixing and the weak mixing implies the ergodicity. Conversely,
one can ask for which class of transformations ergodicity implies all
order mixing. Halmos [2] has proved that if a continuous automor-
phism of a compact Abelian group is ergodic, then the automorphism
is strongly mixing (i.e. 1-order mixing), and Rohlin [4] has proved
further that every ergodic continuous automorphism of a compact
Abelian group is all order mixing.

In this paper we study some classes of the transformations of
which ergodicity and strong mixing imply all order mixing respec-
tively. Our transformations were first topologically studied by
Keynes and Robertson in their paper [1].

Let (2, B, m) be a probability measure space and I be the set of
all integers or real numbers. Consider a group G of homeomorphisms
of I and for each g € G, define an automorphism T, of (@ 2, @ B, i@m)
as follows:

T (wi|teD=(w,4|te]) (w”iel)e%!).
We call each T, a G-index automorphism.

Definitions. (i) T, is ergodic if for every E, F e @.@ with

positive measure, there exists a positive integer » such that ©
Xm(T2ENF)>0.

iel
(ii) T, is weakly mizing if the product automorphism 7,7, is
ergodic.
(iii) T, is strongly mixing if for every E,F ¢ .®1_@ with positive
measure, te
lim @m(T?ENF) =i(e>§1m(E)ie@m(F).
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Lemma 1. Let gxe. If T, is ergodic, then there exists a
positive integer n such that g™(a) N B=0 holds for every finite subsets
a, BofI.
Proof. Suppose there exist finite subsets a, 8 of I such that
9" ()N B=0 for all n. Choosing A4, B ¢ B with positive measure so



