9. On a Class of Hypoelliptic Differential Operators

By Yoshio Kato
Department of Mathematics, Aichi University of Education

(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1970)
§1. Introduction. Let $A(x, y ; \xi)$ and $B(x, y ; \eta)$ be uniformly elliptic polynomials ${ }^{1}$ in $\xi \in R^{\nu}$ and in $\eta \in R^{\mu}$, respectively, with coefficients in $C^{\infty}(\Omega)$ and $g(x)$ be a real valued function in $C^{\infty}(\Omega)$, not depending on y, where Ω is an open set of $R_{x}^{\nu} \times R_{y}^{\mu}$. In this paper, we consider the hypoellipticity ${ }^{2)}$ of linear partial differential operators of the form
(1) $\quad P=A\left(x, y ; D_{x}\right)+g(x)^{2} B\left(x, y ; D_{y}\right)$,
where $D_{x}=\left(D_{x_{1}}, \cdots, D_{x_{\nu}}\right)$ with $D_{x_{j}}=-i \partial / \partial x_{j}$ and $D_{y}=\left(D_{y_{1}}, \cdots, D_{y_{\mu}}\right)$ with $D_{y_{k}}=-i \partial / \partial y_{k}(i=\sqrt{-1})$. It is well known that if $g(x)$ vanishes at no point of Ω operator (1) is hypoelliptic in Ω. Indeed, we can immediately see that it is formally hypoelliptic there. For operator (1) in which $g(x)$ may vanish, we can prove

Theorem. Suppose in operator (1) that A and B are uniformly elliptic in Ω and the coefficients of A are not dependent on the variable y and that there exists a multi-index $\alpha=\left(\alpha_{1}, \cdots \alpha_{\nu}\right) \in N^{v^{3}}$ such that $D_{x}^{\alpha} g=D_{x_{1}}^{\alpha_{1}} \cdots D_{x_{v}}^{\alpha_{\nu}} g$ vanishes at no point of Ω. Then the differential operator P of form (1) is hypoelliptic in Ω.

This is motivated by the result of Dr. T. Matsuzawa (unpublished) that the operators on the (x, y)-plane: $D_{x}^{2 l}+x^{2 k} D_{y}^{2 m}(l, m=1,2, \cdots$; $k=0,1, \ldots$) are hypoelliptic in the plane (see [4]). One of the most important keys to the proof of Theorem is the inequality (H) which is stated in § 2 and is one of the inequalities proved by Hörmander [2].

In $\S 2$ we prepare some lemmas and propositions, with the aid of which the proof of Theorem will be accomplished in § 3.
§2. Preliminaries. Throughout this section we assume that A, B and g have the same meaning as in Theorem and that the degrees of A and B are $2 l$ and $2 m(l, m=1,2, \cdots)$, respectively. First define norm ||| • ||| and its dual norm ||| • ||| ${ }^{\prime}$ by

$$
\|u\|\left\|^{2}=\right\| D_{x}^{l} u\left\|^{2}+\right\| g D_{y}^{m} u\left\|^{2}+\right\| u\left\|^{2},\right\|\|v\| \|^{\prime}=\sup _{u \in C_{0}^{\infty}(\Omega)} \frac{|\langle v, u\rangle|}{\|u\| \|}
$$

[^0]
[^0]: 1) The $A(x, y ; \xi)$ is called uniformly elliptic in ξ, if there exists a positive constant c such that $\operatorname{Re} A_{0}(x, y ; \xi) \geq c|\xi|^{2 l}$ for all $\xi \in R^{\nu}$ and all $(x, y) \in \Omega$ where $2 l$ is the degree of A and A_{0} denotes the leading part of A.
 2) We say that P is hypoelliptic in Ω, if every $u \in \mathscr{D}^{\prime}(\Omega)$ is infinitely differentiable in every open set where $P u$ is infinitely differentiable.
 3) We denote by N the set of non-negative integers.
