8. Some Theorems on Cluster Sets of Set-Mappings

By Shinji Yamashita
Mathematical Institute, Tôhoku University
(Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1970)

1. This is a résumé of the paper which will appear elsewhere [4]. A set-mapping F from a non-empty set A into a set B is, by definition, a mapping from A into the totality of subsets of B, so that, for every $a \in A, F(a)$ denotes a (possibly empty) subset of B. A nontrivial example known to complex variable analysts is, of course, a multiple-valued analytic function obtained by analytic continuation throughout a plane domain D starting with a fixed function element with the centre in D. This defines a set-mapping from D into the Riemann sphere. Now, let T and S be topological spaces and F be a set-mapping from a subset $U \neq \emptyset$ of T into S. Let $G \neq \emptyset$ be a subset of U and $t_{0} \in \bar{G}$, here and elsewhere, "bar" means the closure in the considered spaces. Then the cluster set $C_{G}\left(F, t_{0}\right)$ of F at t_{0} relative to G is defined by the following:

$$
C_{G}\left(F, t_{0}\right)=\bigcap \overline{F(N \cap G)},
$$

where the intersection is taken over all neighbourhoods N of t_{0} in T with

$$
F(N \cap G)=\bigcup_{t \in N \cap G} F(t) .
$$

If, in particular, T is the disk $|z| \leqq 1, U$ is $|z|<1$ and $e^{i \theta}$ is a point of $|z|=1$, then the full cluster set $C_{U}\left(F, e^{i \theta}\right)$, a curvilinear cluster set $C_{r}\left(F, e^{i \theta}\right)$, the radial cluster set $C_{\rho}\left(F, e^{i \theta}\right)$ and an angular cluster set $C_{\Delta}\left(F, e^{i \theta}\right)$ at $e^{i \theta}$ are the cluster sets corresponding respectively to $G=U$, a simple arc in U with the initial point in U and the terminal point $e^{i \theta}$, the radius drawn to $e^{i \theta}$ and an angular domain Δ in U with the vertex at $e^{i \theta}$.
2. Size of cluster sets. We consider the case where T and S are metrizable and S is compact.

Theorem 1. Let F be an arbitrary set-mapping from a subset $U \neq \emptyset$ of T into S such that $F(t) \neq \emptyset$ for any point $t \in U$. Let $\Sigma \neq \emptyset$ be closed in S and let K be the boundary (in T) of U. We set, for every $t \in K$,

$$
f(t)=\sup (\inf \operatorname{resp} .)\left\{\operatorname{dis}(\Sigma, \alpha) ; \alpha \in C_{U}(F, t)\right\} .
$$

Then f is an upper (lower resp.) semi-continuous function on K. We have the same conclusion if we replace $\operatorname{dis}(\Sigma, \alpha)$ in the definition of f by

$$
\overline{\operatorname{dis}}(\Sigma, \alpha)=\sup \{\operatorname{dis}(s, \alpha) ; s \in \Sigma\} .
$$

