4. On wM-Spaces. II

By Tadashi ISHII Utsunomiya University (Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1970)

1. Introduction. This is the continuation of our previous paper [6]. The purpose of this paper is to study metrizability of wM-spaces and to give a solution to a problem under what conditions a wM-space is an M-space.

Definition. A topological space X has a $\bar{G}_{\delta}(k)$ -diagonal $(G_{\delta}(k)$ -diagonal, $k=1, 2, \cdots$, if there exists a sequence $\{\mathfrak{B}_n\}$ of open coverings of X such that for distinct points x, y there exists some \mathfrak{B}_m such that $y \notin \overline{\mathrm{St}^k(x, \mathfrak{B}_m)}(y \notin \mathrm{St}^k(x, \mathfrak{B}_m))$.

By J. G. Ceder [5], a space X has a $G_{\delta}(1)$ -diagonal (= G_{δ} -diagonal in [4]) if and only if the diagonal Δ of $X \times X$ is a G_{δ} -subset of $X \times X$.

2. Metrizability of wM-spaces.

We shall prove some metrization theorems for wM-spaces.

Theorem 2.1. In order that a space X be metrizable it is necessary and sufficient that X be a normal wM-space which has a $\bar{G}_{\mathfrak{s}}(1)$ -diagonal.

Proof. The necessity of the condition is obvious. To prove the sufficiency of the condition, let X be a normal wM-space with a decreasing sequence $\{\mathfrak{A}_n\}$ of open coverings of X satisfying (M_2) , and suppose that X has a $G_{i}(1)$ -diagonal, that is, there exists a decreasing sequence $\{\mathfrak{B}_n\}$ of open coverings of X such that for distinct points x, y there exists some \mathfrak{V}_n such that $y \notin \overline{\operatorname{St}(x, \mathfrak{V}_n)}$. Then clearly X is Hausdorff. Let us put $\mathfrak{W}_n = \mathfrak{A}_n \cap \mathfrak{V}_n, n = 1, 2, \cdots$. Then it is proved that $\{\operatorname{St}(x, \mathfrak{W}_n) | n = 1, 2, \dots\}$ is a basis for neighborhoods at each point x of X. Indeed, if not, then there exist a point x_0 of X and an open subset U of X such that $x_0 \in U$ and $\operatorname{St}(x_0, \mathfrak{W}_n) - U \neq \emptyset$ for each n. Let $x_n \in \operatorname{St}(x_0, \mathfrak{W}_n) - U, n = 1, 2, \cdots$. Then by (M_2) the sequence $\{x_n\}$ has an accumulation point y which is contained in X-U. Since $x_0 \neq y$, we have $y \notin \overline{\operatorname{St}(x_0, \mathfrak{W}_k)}$ for some k, while $y \in \cap \overline{\operatorname{St}(x_0, \mathfrak{W}_n)}$. This is a contradiction, and hence $\{\operatorname{St}(x, \mathfrak{B}_n) | n=1, 2, \dots\}$ is a basis for neighborhoods at each point x of X. On the other hand, as is proved in our previous paper [6], every normal wW-space X is collectionwise normal (cf. [6, Theorem 2.4]). Hence, by a theorem of R. H. Bing [2], X is metrizable. Thus we complete the proof.

Theorem 2.2. In order that a space X be metrizable it is neces-