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4. On wM.Spaces. II

By Tadashi ISHII
Utsunomiya University

(Comm. by Kinjir5 KVNU(I, M. Z. )., jan. 12, 1970)

1. Introduction. This is the continuation of our previous paper
[6]. The purpose of this paper is to study metrizability of wM-spaces
and to give a solution to a problem under what conditions a wM-space
is an M-space.

Definition. A topological space X has a G(k)-diagonal (G(k)-
diagonal,/c- 1, 2, ., if there exists a sequence {n} of open coverings
of X such that for distinct points x, y there exists some such that
y e St(x,) (y e St(x, )).

By J. G. Ceder [5], a space X has a G(1)-diagonal (-G-diagonal
in [4]) if and only if the diagonal z/of X X is a G-subset of X X.

2o Metrizability of wM,spaceso
We shall prove some metrization theorems for wM-spaces.
Theorem 2.1. In order that a space X be metrizable it is neces-

sary and sucient that X be a normal wM-space which has a G(1)-
diagonal.

Proof. The necessity of the condition is obvious. To prove the
sufficiency o the condition, let X be a normal wM-space with a de-
creasing sequence {} of open coverings of X satisfying (M), and
suppose that X has a G(1)-diagonal, that is, there exists a decreasing
sequence (!3} o open coverings of X such that for distinct points x, y
there exists some such that y e St(x,). Then clearly X is
Hausdorff. Let us put n=/,n--1, 2,.... Then it is proved
that {St(x, )In-1, 2,... } is a basis for neighborhoods at each point
x of X. Indeed, if not, then there exist a point x0 of X and an
open subset U of X such that x0 e U and St(x0, )-U= for each n.
Let x e St(x0, )-U,n--1,2, Then by (M) the sequence {Xn}
has an accumulation point y which is contained in X-U. Since
Xo#-y, we have y e St(x0,) or some k, while y e St(x0, ). This
is a contradiction, and hence {St(x, n)[n-1, 2, .} is a basis for
neighborhoods at each point x of X. On the other hand, as is proved
in our previous paper [6], every normal wW-space X is collectionwise
normal (cf. [6, Theorem 2.4]). Hence, by a theorem of R. H. Bing
[2], X is metrizable. Thus we complete the proof.

Theorem 2.2. In order that a space X be metrizable it is neces-


