3. On wM-Spaces. I

By Tadashi ISHII Utsunomiya University

(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1970)

- 1. Introduction. The purpose of the present paper is to introduce the notion of wM-spaces, which is a generalization of M-spaces introduced by K. Morita [6], and to show some preperties of these spaces. For a sequence $\{\mathfrak{A}_n\}$ of open (or closed) coverings of a topological space X, we shall consider the following two conditions:
- (\mathbf{M}_1) { If $\{K_n\}$ is a decreasing sequence of non-empty subsets of X such that $K_n \subset \operatorname{St}(x_0, \mathfrak{A}_n)$ for each n and for some point x_0 of X, then $\cap \overline{K}_n \neq \emptyset$.
- $(\mathbf{M}_2) \begin{cases} \text{If } \{K_n\} \text{ is a decreasing sequence of non-empty subsets of } X \text{ such that } K_n \subset \operatorname{St}^2(x_0, \mathfrak{A}_n) \text{ for each } n \text{ and for some point } x_0 \text{ of } X, \text{ then } \cap \bar{K} \neq \emptyset.$

A space X is an M-space if there exists a normal sequence $\{\mathfrak{A}_n\}$ of open coverings of X satisfying (M_1) . A space X is an M^* -space $(M^*$ -space) if there exists a sequence $\{\mathfrak{F}_n\}$ of locally finite (closure preserving) closed coverings of X satisfying (M_1) (T. Ishii [2], F. Siwiec and J. Nagata [8]). A space X is a $w\Delta$ -space if there exists a sequence $\{\mathfrak{A}_n\}$ of open coverings of X satisfying (M_1) (C. Borges [1]). As is shown by K. Morita [7], there exists an M^* -space which is locally compact Hausdorff but not an M-space. Further, in our previous paper [3], we proved that a normal space X is an M-space if and only if it is an M^* -space.

Now we shall define wM-spaces including all M-spaces, M^* -spaces and M^* -spaces.

Definition. A space X is a wM-space if there exists a sequence $\{\mathfrak{A}_n\}$ of open coverings of X satisfying (M_2) .

In the above definition, we may assume without loss of generality that \mathfrak{A}_{n+1} refines \mathfrak{A}_n for each n.

As a remarkable property of a wM-space, we can prove that every normal wM-space is strongly normal, that is, collectionwise normal and countably paracompact (Theorem 2.4). This result plays an important role in metrizability of wM-spaces in the next paper. Throughout this paper we assume at least T_1 for every topological spaces unless otherwise specified.

¹⁾ For each positive integer k, $\operatorname{St}^k(x_0, \mathfrak{A}_n)$ denotes the iterated star of a point x_0 in each covering \mathfrak{A}_n .