36. On a Riemann Definition of the Stochastic Integral. I

By Sigeyosi OGAWA

Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

§1. Introduction. Let $\{\beta_t(\omega); t \in [0, T]\}$ be a one-dimensional R^1 -valued Brownien motion process, and let N_t^s be the smallest σ -algebra generated by $\{\beta_t(\omega); s \leq \tau \leq t\}$. Let S be the class of functions $f_t(\omega)$ on $[0, T] \times \Omega$ satisfying the following conditions.

S.1) $f_t(\omega)$ is $B_{[s,t]} \times N_t^s$ -measurable for every $t \in [s, T]$, where $B_{[s,t]}$ is the Borel field on the interval [s, t].

S.2) $M\left(\int_{s}^{t} f_{\tau}^{2}(\omega) d\tau\right) < +\infty$ for $0 \leq s \leq t \leq T$,

where $M(\cdot)$ denotes the expectation.

We will call a family of partitions $\Delta^{(n)}$ "canonical" if $\max(t_{i+1}^{(n)}-t_i^{(n)})\cdot n$ tends to a constant as $n\to\infty$, where $\Delta^{(n)}=\{0=t_0^{(n)}< t_1^{(n)}<\cdots< t_n^{(n)}=T\}$. Let us consider a following Riemann sum of a function $f_{\iota}(\omega)$ which belongs to the class S.

(1)
$$S_{n}(f)(\omega) = \sum_{i=0}^{n} f_{t_{i+1}^{(n)} + k(t_{i+1}^{(n)} - t_{i}^{(n)})}(\omega)(\beta_{t_{i+1}^{(n)}}(\omega) - \beta_{t_{i}^{(n)}}(\omega))$$

where $0 \le k \le 1$.

Now our aim is to investigate conditions for the existence of the l.i.m. $S_n(f)(\omega)$. As for this problem, it is well known that if the interpolation ratio k is fixed to zero the limit of the series $S_n(f)(\omega)$ exists and equals to the Ito's stochastic integral $\int_0^T f_t(\omega) d^0 \beta_t(\omega)$,*' while if the interporlation ratios are taken arbitrarily in each interval $(t_i^{(n)}, t_{i+1}^{(n)})$ it may fail to converge.

We will concern only with the series (1), where the ratios of interportation are fixed to a certain constant $k(0 \le k \le 1)$ through all the intervals $(t_i^{(n)}, t_{i+1}^{(n)})$. Now the difficulty of this problem lies in the fact that the each random variables $f_{t_i^{(n)}+k(t_{i+1}^{(n)}-t_i^{(n)})}(\omega)$ $(i=0, 1, \dots, n-1)$ are not independent of the corresponding increments $\beta_{t_{i+1}^{(n)}}(\omega) - \beta_{t_i^{(n)}}(\omega)$ $(i=0, 1, \dots, n-1)$. So it seems to be necessary to put on the functions $f_i(\omega)$ one more condition which describes the way of dependence of $f_i(\omega)$ on the process $\beta_i(\omega)$.

To express this condition we will introduce a notion of β differentiability of the functions $f_t(\omega)$ in §2. With the help of this

^{*)} To distinguish the Ito's integral from the other types of integrals the notation $d^0\beta_t$ will be used.