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1. Introduction. In this paper the followings shall be proved.
Let G be a locally compact totally disconnected non-discrete group and
let T be a continuous automorphism of G. If there are two elements
a and w in G such that {T(a)(w)ln=O, +_1, +_2, ...} is dense in G then
G is compact, where T(a) is the continuous affine transformation o G
defined by T(a)(x)-a. Tx or x in G. Next let G be a locally compact
totally disconnected (not necessarily non-discrete) group and let T be a
continuous automorphism of G such that there is an element w in G
such that {T(w)]n--O, _+1, +2, ...} is dense in G. Then G is compact,
whence T. S. Wu’s problem (see [1, p. 518] and also [6]) raised in 1967
concerning the study of topology of a locally compact group G which
admits an ergodic continuous automorphism with respect to a Haar
measure on G is solved affirmatively.

Recently M. Rajagopalan and B. Schreiber [4] have proved that
if a locally compact group G has a continuous automorphism which is
ergodic with respect to a Haar measure on G then G is compact. In
their proof the property of Fourier-Stieltjes coefficients o idempotent
measures on the torus K- {exp (iO) 0 =< 0 2} plays an important role.
In studying their techniques of the proof I have been led to that the
techniques can be applied to the arguments o continuous affine trans-
formations.

2. Continuous atine transformations. Throughout this paper,
T and T(a) will be denoted a continuous automorphism of a locally
compact group G and a continuous affine transformation of G induced
by a in G and T, respectively.

Lemma 1. Let H be a complex Hilbert space, let A be a bounded
operator and U1, U. unitary operators on H. Then for given and

] in H there is a complex regular measure/ on the 2-dimensional torus
KK whose Fourier-Stielt]es transform is given by

(m, .n) (A U?$, U}, c <m, n< c.

Proof. Let p and p denote spectral measures on [0,27D for U
and U., respectively. For , ] in H we have


