33. Continuous Affine Transformations of Locally Compact Totally Disconnected Groups

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

1. Introduction. In this paper the followings shall be proved. Let G be a locally compact totally disconnected non-discrete group and let T be a continuous automorphism of G. If there are two elements a and w in G such that $\{T(a)^n(w) | n=0, \pm 1, \pm 2, \cdots\}$ is dense in G then G is compact, where T(a) is the continuous affine transformation of G defined by $T(a)(x) = a \cdot Tx$ for x in G. Next let G be a locally compact totally disconnected (not necessarily non-discrete) group and let T be a continuous automorphism of G such that there is an element w in G such that $\{T^n(w) | n=0, \pm 1, \pm 2, \cdots\}$ is dense in G. Then G is compact, whence T. S. Wu's problem (see [1, p. 518] and also [6]) raised in 1967 concerning the study of topology of a locally compact group G which admits an ergodic continuous automorphism with respect to a Haar measure on G is solved affirmatively.

Recently M. Rajagopalan and B. Schreiber [4] have proved that if a locally compact group G has a continuous automorphism which is ergodic with respect to a Haar measure on G then G is compact. In their proof the property of Fourier-Stieltjes coefficients of idempotent measures on the torus $K = \{\exp(i\theta) | 0 \leq \theta < 2\pi\}$ plays an important role. In studying their techniques of the proof I have been led to that the techniques can be applied to the arguments of continuous affine transformations.

2. Continuous affine transformations. Throughout this paper, T and T(a) will be denoted a continuous automorphism of a locally compact group G and a continuous affine transformation of G induced by a in G and T, respectively.

Lemma 1. Let H be a complex Hilbert space, let A be a bounded operator and U_1 , U_2 unitary operators on H. Then for given ξ and η in H there is a complex regular measure μ on the 2-dimensional torus $K \times K$ whose Fourier-Stieltjes transform is given by

 $\hat{\mu}(m,n) = \langle AU_1^m \xi, U_2^n \eta \rangle, \qquad -\infty < m, n < \infty.$

Proof. Let ρ_1 and ρ_2 denote spectral measures on $[0, 2\pi)$ for U_1 and U_2 , respectively. For ξ , η in H we have