32. L^v-theory of Pseudo-differential Operators

By Hitoshi KUMANO-GO^{*)} and Michihiro NAGASE^{**)}

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

Introduction. The L^2 -theory of pseudo-differential operators has been studied in many papers, but we know very few papers which are concerned with L^p -theory. We say $g(x, \xi) \in S^m_{\rho,\delta}, \ 0 < \rho \leq 1, \ 0 \leq \delta$, when $g(x, \xi) \in C^{\infty}(R^n_x \times R^n_{\xi})$ and for any α , β , there exists a constant $C_{\alpha,\beta}$ such that

 $|\partial_x^{\alpha}\partial_{\xi}^{\beta}g(x,\xi)| \leq C_{\alpha,\beta} \langle \xi \rangle^{m+\delta|\alpha|-\rho|\beta|}$

where $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n)$ are multi-indices whose elements are non-negative integers, $\langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}}$, and $\partial_{x_j} = \partial/\partial x_j$, $\partial_{\xi_j} = \partial/\partial \xi_j$, $j = 1, \dots, n$,

 $\partial_x^{lpha} = \partial_{x_1}^{lpha_1} \cdots \partial_{x_n}^{lpha_n}, \ \partial_{\xi}^{eta} = \partial_{\xi_1}^{eta_1} \cdots \partial_{\xi_n}^{eta_n}, \ |lpha| = lpha_1 + \cdots + lpha_n,$

 $|\beta| = \beta_1 + \cdots + \beta_n$. For a pseudo-differential operator defined by the symbol of class $S^m_{\rho,\delta}$, the L^2 -boundedness of the form $||g(X, D_x)u||_s \leq C||u||_{m+s}$ was proved by Hörmander [2] and Kumano-go [4] in the case $0 \leq \delta < \rho \leq 1$.

In the present paper we shall study the general L^p -theory for pseudo-differential operators of class $S_{1,s}^m$ in the case: $0 \leq \delta < 1$ and $1 . Recently for operators of class <math>S_{1,s}^0$, Kagan [3] proved the L^p -boundedness: $\|p(X, D_x)u\|_{L^p} \leq C \|u\|_{L^p}$ for 1 . Applying the $theory in Kumano-go [5], we first prove the inequality <math>\|g(X, D_x)u\|_{p,s}$ $\leq C \|u\|_{p,m+s}$ for any real s and 1 (which solves a problem of $Hörmander in [2], p. 163, for the typical case <math>\rho = 1$), and prove the theorems: the generalized Poincaré inequality, the invariance of the space $H_{p,s}$ under coordinate transformation and the a priori estimate for elliptic operators.

1. Definitions and fundamental lemmas.

We shall use the following notations:

 $S = \{u(x) \in C^{\infty}(\mathbb{R}^n); \lim_{|x| \to \infty} |x|^m | \partial_x^{\alpha} u(x)| = 0 \text{ for any } m \text{ and } \alpha\}.$

 \mathcal{S}' denotes the dual space of \mathcal{S} . For $u \in \mathcal{S}$, we define the Fourier transform of u by $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$, $x \cdot \xi = x_1 \xi_1 + \cdots + x_n \xi_n$. For any real s we define an operator $\langle D_x \rangle^s \colon \mathcal{S} \to \mathcal{S}$ by

$$\langle D_x \rangle^s u(x) = (2\pi)^{-n} \int e^{ix \cdot \epsilon} \langle \xi \rangle^s \hat{u}(\xi) d\xi.$$

^{*)} Department of Mathematics, Osaka University.

^{**)} Osaka Industrial University.