
290 Proc. Japan Acad., 46 (1970) [Vol. 46,
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1. Introduction. K. Morita [10] introduced the notion of a P-
space and demonstrated its importance in the theory of product spaces.
The purpose of this note is to prove some results about P-spaces which
will have application in homotopy extension. Let A X be closed and

f" X--.Y continuous. If, in the free union X+ Y, we identify a e A
with f(a) e Y, we obtain a quotient space Z called the ad]unction space
of X and Y via the map f[3, p. 127]. A normal space X is called
totally normal if every open subset G of X can be covered by a family
locally finite in G, of open F, sets of X[1]. We will prove the follow-
ing theorems"

Theorem 1. If X and Y are normal P-spaces, the adjunction
space Z of X and Y is a normal P-space.

Theorem 2. If X is a totally normal P-space and Y is a compact
metric space, X Y is a totally normal P-space.

Actually, Theorem 2 will follow from the slightly more general"
Theorem 2’. If X is totally normal and countably paracompact,

and Y is compact metric, X Y is totally nomal.
Theorem 3. An open subspace of a totally normal P-space is a

(normal) P-space.
Remark 1o The compactness of Y in Theorem 2’ cannot be

dropped since Michael [9] has given an example of a hereditarily
paracompact (and hence totally normal and countably paracompact)
space such that its product with a separable metric space is not normal.
We are therefore led to the following question"

Question 1. If X is a totally normal P-space and Y is a metric
space, is X Y totally normal? Note that the normality of X Y is
assured since X is a normal P-space [10, Theorem 4.1]. In view of
[11, Theorem 2], it would be sufficient to show that X Y is hereditari-
ly countably paracompact.

In proving Theorem 1, we will use the closed set dual of the defi-
nition of a P-space given in [10].

Definition 1. Let m be a cardinal number _> 1. X is a P(m)-space
if for any set t9 of power m and for any family {F(a, ..., a); a,
.., ae 9;i-1, 2,...} of closed sets of X such that F(a,...,a)
DF(a,..., a, a/) for each sequence a, a, ., there exists a family


