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3. In this part, we consider the inhomogeneous equation

( 2 )’ l-I [/ aL]u(t) ge,
where g e X and we0 real. We restrict ourselves to the case when
the Hilbert space X and the operator H L/ satisfy the following con-
ditions, and prove the so called limiting amplitude principle.

[C.1] There exists a Frchet space Y, into which X is densely
injected, with semi-norms {p(f) [p(f, f)]/ -1, 2, } having the
following properties"
(28) p(f) p+(f) f and sup p(f) f for all f e X.

[C.2] The set X’ defined below is dense in X.
Definition. We denote by X’ the set of all g e X which satisfy

the following two conditions"
( i ) Let [a, b] be any bounded interval in R. Then, as e0,

(H--a--ie)-y converges uniformly in a e [a, b] in the sense of each
p-topology.

(ii) We put (H- a iO)-g lim (H- a ie)-Xg. Then (H- a
0

iO)-Xg is a HSlder continuous function of a e R with values in Y.
[C.3] The origin 0 is not an eigenvalue of H.
Now, by the same reasoning as in the proof of Theorem 3, we see

that the initial value problem (2)’, (3) has a unique solution in the class
[(D(H-+)). Further, it follows that

OJ2m

(29) H2-3{-u(t): ()-ler nH2-t= l=
2m oerH

(cf., (26)).
Lemma . If we choose g X’, then as

2m

(30) H-3{-u(t)ie
k=l

in the sense of each p-topology.
Proo. Note that for any0 pure imaginary and f e X,


