79. On the Existence of a Potential Theoretic Measure with Infinite Norm

By Shirô OGAWA
Department of Engineering, Kobe University
(Comm. by Kinjirô Kunugi, M. J. A., April 13, 1970)

Introduction. Let R^m be the *m*-dimensional Euclidian space and $\phi(x,y)$ a lower semi-continuous function from $R^m \times R^m$ into $[0,+\infty]$. The ϕ -potential of a positive Radon measure μ in R^m is defined by

$$\phi \mu(x) = \int \phi(x, y) d\mu(y).$$

In the case that there exists at least such a positive measure ν that the support $S\nu$ is compact and the potential $\phi\nu(x)$ is continuous in the whole space R^m , we can consider the following classes of measures;

 $\mathcal{F}(\phi) = \{ \nu ; \nu \geq 0, \ S\nu \ compact \ and \ \phi\nu(x) \ continuous \ in \ \mathbb{R}^m \},$

$$\mathcal{G}(\phi) = \left\{ \mu \; ; \; \mu \geq 0 \quad and \quad \int \!\! \phi \, \mu d\nu < + \infty \quad for \; any \quad \nu \in \mathcal{F}(\phi) \right\}.$$

The aim of this paper is to answer affirmatively for a question posed by G. Anger [1]: Let $\phi_N(x, y)$ be the Newtonian kernel defined in R^m $(m \ge 3)$. Is there a measure $\mu \in \mathcal{G}(\phi_N)$ with infinite norm? Moreover we study the same problem in case of α -kernel $\phi_{\alpha}(x, y)$.

1. Existence of a measure $\mu \in \mathcal{G}(\phi_N)$ with infinite norm. The Newtonian kernel $\phi_N(x, y)$ in R^m $(m \ge 3)$ is defined by

$$\phi_N(x,y) = |x-y|^{2-m}$$

where |x-y| denotes the distance between two points x and y in R^m . Let $B_{a,r}$ be the closed ball with the center a and the radius r and $S_{a,r}$ the surface of the ball $B_{a,r}$. We introduce the class of measures

 $S = {\lambda; spherical distribution with uniform density}.$

Especially the spherical distribution with uniform density on $S_{a,r}$ is denoted by $\lambda_{a,r}$. It is well known that S is a non empty subset of $\mathcal{F}(\phi_N)$. Let us recall following potential theoretic principles,

Maximum principle: If it holds that, for a constant V, $\phi\nu(x) \leq V$ on the support $S\nu$ of a positive measure ν , then we have the same inequality in the whole space.

Domination principle: If it holds that, for a positive measure ν and an energy finite positive measure μ , $\phi\mu(x) \leq \phi\nu(x)$ on the support $S\mu$, then we have the same inequality in the whole space.

Lemma 1. For a given positive measure μ , the mutual energy $\int \phi_N \mu d\nu$ is finite for any $\nu \in \mathcal{F}(\phi_N)$ if $\int \phi_N \mu d\lambda$ is finite for any $\lambda \in \mathcal{S}$.