76. On a Certain Type of Differential Hopf Algebras^{*}

By Shôrô ARAKI and Zen-ichi YOSIMURA Osaka City University

(Comm. by Kunihiko KODAIRA, M. J. A., April 13, 1970)

In [1] we have introduced strange differential Hopf structures arising from *K*-theory and have called them differential near Hopf algebras. One of the purposes of this paper is to find a general theory in order to make these strange differential Hopf algebras fit with the usual differential Hopf algebras.

Our main result is a generalization of a criterion of coprimitivity of Hopf algebras [5]. This enables us to use biprimitive form spectral sequences due to Browder [3] in researches of K-theory of H-spaces.

The detailed proofs will be published elsewhere.

1. By a G_2 -module $M = M_0 \oplus M_1$ we mean a Z_2 -graded module over a field K. M has a canonical involution σ such that

 $\sigma \mid M_0 = 1$ and $\sigma \mid M_1 = -1$.

All algebraic structures such as algebras, coalgebras, differential algebras, etc., will be understood those over certain underlying G_2 -modules [1]. In the present work, all algebras (or coalgebras) are equipped with augmentations and units (or counits), but are not necessarily associative.

Let M and N be differential G_2 -modules. $M \otimes N$ is also a differential G_2 -module. The usual switching map

 $T: M \otimes N \rightarrow N \otimes M$

is an isomorphism of differential G_2 -modules. Pick $\lambda \in K$. We define the λ -modified switching map

 $T_{\lambda}: M \otimes N \rightarrow N \otimes M$

by $T_{\lambda} = (1 + \lambda \cdot d\sigma \otimes d)T$. T_{λ} is also an isomorphism of differential G_2 -modules and involutive, i.e., $T_{\lambda}^2 = 1$.

Generalizing the above T_{λ} , we can define the λ -modified permutations of tensor factors so that \mathfrak{S}_n acts as a group of automorphisms of the differential G_{λ} -module $M^{\otimes n} = M \otimes \cdots \otimes M$.

Our first basic idea is to replace the switching maps and permutations of tensor factors in the ordinary theory of Hopf algebras [5] by λ -modified ones and to construct a theory suitable to Hopf structures derived from mod p K-theory.

2. Let A and B be differential algebras (or coalgebras). Putting

^{*)} Dedicated to Professor Atuo Komatu on his 60th birthday.