99. On the Sets of Points in the Ranked Space. IV

By Yukio SAKAMOTO,^{*)} Hidetake NAGASHIMA,^{**)} and Kin'ichi YAJIMA^{***)}

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1970)

In this paper we report some properties holding in a sequentially compact ranked space.

We defined in previous papers the concepts such as r-open subsets [1], sequentially compact subsets [2], R-convergence and paraconvergence of a sequence of points [3], $\{p_a\}$, in a ranked space.

In the present paper we define a concept that a ranked space R is countably compact and a concept that R is totally bounded.

Definition 1. A ranked space is countably compact if and only if every countable open covering of the ranked space, S, has a finite sub-covering of S.

Definition 2. A ranked space R is totally bounded if and only if for every natural number γ , there are suitable finite points of R, a_1, a_2, \dots, a_n , and $V(a_i)$ $(i=1, 2, \dots, n)$ such that

(1) $V(a_i) \in \mathfrak{B}_r$ and $V(a_i) \cap V(a_j) = \emptyset \ (i \neq j)$ and

(2) there does not exist any p of R and $V(p) \in \mathfrak{V}_r$ satisfying

$$V(p) \subset R - \bigcup_{i=1}^n V(a_i).$$

Proposition 1. If a ranked space R is sequentially compact, then R is countably compact.

Proof. Suppose that R is not countably compact. Then, there is some countable open covering $\{U_i\}$ such that $\bigcup_{i=1}^{n} U_i \neq R$ for every natural number n. Hence there is a point a_n of R such that $a_n \in R$ $-(\bigcup_{i=1}^{n} U_i)$ for every n. Since R is sequentially compact, the sequence $\{a_n\}$ has its subsequence $\{a_{m_n}\}$ such that $a \in \{\lim_{a} a_{m_n}\}$. By the definition of R-convergence, there is a fundamental sequence $\{V_k(a)\}$ of neighborhoods of the point a for which there holds $a_{m_k} \in V_k(a)$.

On the other hand, since $a \in R$ and $\{U_i\}$ is a covering of R, there is an element U_i of $\{U_i\}$ such that $a \in U_i$. Since U_i is an r-open subset

^{*)} Japan Women's University.

^{**)} Hokkaido University of Education.

^{***)} Japanese National Railways.