No. 5]

97. Note on the Lexicographic Product of Ordered Semigroups

By Tôru SAITÔ Tokyo Gakugei University (Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1970)

A semigroup S with a simple order \leq is called a *left* [right] ordered semigroup if it satisfies the condition that

for every $x, y, z \in S, x \leq y$ implies $zx \leq zy$ $[xz \leq yz]$. S is called an ordered semigroup if it is a left and right ordered semigroup. Let $\{S_{\alpha}; \alpha \in A\}$ be a collection of semigroups, each of which has a simple order and let the index set A be a well-ordered set. The direct product semigroup $\prod_{\alpha \in A} S_{\alpha}$ is called the *lexicographic product* of $\{S_{\alpha}; \alpha \in A\}$ if the simple order \leq in $\prod_{\alpha \in A} S_{\alpha}$ is defined by

 $(a_1, \dots a_{\alpha}, \dots) < (b_1, \dots, b_{\alpha}, \dots)$ if and only if there exists an element $\alpha \in A$ such that, for every $\gamma \in A$ with $\gamma < \alpha, a_{\gamma} = b_{\gamma}$ and moreover that $a_{\alpha} < b_{\alpha}$.

The purpose of this note is to give a condition in order that the lexicographic product of a well-ordered collection of ordered semigroups is an ordered semigroup.

A semigroup S is called left [right] condensed if, for every $s \in S$, sS [Ss] is a one-element set.

Lemma 1. Let S be a left condensed semigroup. Then there exist a partition of S into $\{T_{\lambda}; \lambda \in \Lambda\}$ and, for each $\lambda \in \Lambda$, an element $z_{\lambda} \in T_{\lambda}$ such that z_{λ} is a left zero of the semigroup S and that, for every $x_{\lambda} \in T_{\lambda}, x_{\lambda}S = z_{\lambda}$.

Proof. Let S be a left condensed semigroup. For $a, b \in S$, we define $a \sim b$ if and only if aS = bS. Then the relation \sim is an equivalence relation. Hence the set of equivalence classes $\{T_{\lambda} : \lambda \in A\}$ forms a partition of S. By definition, for each T_{λ} , there corresponds an element $z_{\lambda} \in S$ such that $x_{\lambda}S = z_{\lambda}$ for every $x_{\lambda} \in T_{\lambda}$. Hence

$$z_{\lambda}S = x_{\lambda}S^2 = z_{\lambda}$$

and so z_{λ} is a left zero of S and moreover $z_{\lambda} \in T_{\lambda}$.

Lemma 2. A semigroup S is left condensed and left cancellative if and only if S consists of one element.

Proof. Let S be a left condensed and left cancellative semigroup and let $x, y \in S$. Since S is left condensed, we have $x^2 = xy$ and then, since S is left cancellative, x=y. Hence S consists of one element. The converse part is trivial.

Lemma 3. A semigroup S is left condensed and right cancellative