119. On the Bi-ideals in Associative Rings

By S. Lajos*) and Ferenc A. Szász**)
(Comm. by Kinjirô Kunugr, m. J. A., June 12, 1970)

By a ring we shall mean an arbitrary associative ring. For the terminology not defined here we refer to N. Jacobson [3] and N. H. McCoy [8]. We announce some properties of bi-ideals in rings which are analogous to some properties of bi-ideals in semigroups.

For the subsets X and Y of a ring A by the product $X Y$ we mean the subring of A which is generated by the set of all products $x y$, where $x \in X, y \in Y$. By a bi-ideal B of A we mean a subring B of A satisfying the condition
(1)

$$
B A B \subseteq B
$$

Obviously every one-sided ideal of A is a bi-ideal and the intersection of a left and a right ideal of A is also a bi-ideal. It may be remarked that the notion of the bi-ideal in semigroups is a special case of the (m, n)-ideal introduced by S. Lajos [4]. The notion of bi-ideal for associative rings was earlier mentioned by S. Lajos [5]. He noted that the set of all bi-ideals of a regular ring is a multiplicative semigroup. The concept of the bi-ideal was introduced by R. A. Good and D. R. Hughes [1]. An interesting particular case of the bi-ideal is the notion of quasi-ideal due to O. Steinfeld [9] which is defined as follows. A submodule Q of a ring A is called a quasi-ideal of A if the following condition holds:

$$
\begin{equation*}
A Q \cap Q A \subseteq Q \tag{2}
\end{equation*}
$$

It is known that the product of any two quasi-ideals is a bi-ideal (see S. Lajos [5]). It may be remarked that in case of regular rings the notions of bi-ideal and quasi-ideal coincide.

In the following we formulate some general properties of bi-ideals in rings and characterize two important classes of rings in terms of bi-ideals.

Proposition 1. The intersection of an arbitrary set of bi-ideals $B_{i}(i \in I)$ of a ring A is again a bi-ideal of A.

Proposition 2. The intersection of a bi-ideal B of a ring A and a subring S of A is a bi-ideal of the ring S.

Proposition 3. For an arbitrary subset T of a ring A and for a bi-ideal B of A the products $B T$ and $T B$ are bi-ideals of A.

[^0]
[^0]: *) K. Marx University of Economics, Budapest, Hungary.
 **) Math. Institute of the Hungarian Academy of Sciences, Budapest, Hungary.

