111. Rings in which Every Maximal Ideal is generated by a Central Idempotent*)

By Kiyoichi Oshiro
Department of Mathematics, Yamaguchi University
(Comm. by Kenjiro Shoda, m. J. A., June 12, 1970)

Introduction. Recently, in his paper [2], M. Satyanarayana has proved that, for a commutative ring R with identity 1 , the following conditions are equivalent:
(1) R is a finite direct sum of fields.
(2) Every maximal ideal is generated by an idempotent.
(3) Every maximal ideal is a direct summand of R.
(4) Every maximal ideal is R-projective as a right R-module and is principally generated by a zero-divisor.
(5) Every proper maximal ideal is R-injective as a right R module.
(6) R has no nilpotents and every proper maximal ideal has a non-zero annihilator.
By using the technique of the sheaf theory as in [1], we shall extend the above result to a non-commutative case.

In this paper all rings R are assumed to possess an identity element 1, and all R-modules are unitary modules. The term "ideals" will always mean "two-sided ideals".

1. Preliminaries. Pierce [1] defined, for each ring R, a sheaf $S(R)$ of rings over a Boolean space $X(R)$ (that is, a totally disconnected compact Hausdorff space) in such a way that R is the ring of global cross sections of $S(R)$.

Let $B(R)$ be the Boolean ring consisting of all central idempotents of R and let $X(R)$ be the Spec $B(R)$ consisting of all prime ideals of $B(R)$. Let x be a point in $X(R)$. Then, for each element e in x, there is a neighborhood of x, namely $U_{e}(x)=\{y \in X(R) \mid e \in y\}$. These neighborhoods form a base of the open sets of $X(R)$ and with this topology $X(R)$ becomes a Boolean space. Note that the neighborhood $U_{e}(x)$ is an open-closed set of $X(R)$.

For x in $X(R)$, we denote $R / R x$, by R_{x}, where $R x$ is the ideal of R generated by x. Define $S(R)=\bigcup_{x \in X(R)} R_{x}$. Let $\pi: S(R) \rightarrow X(R)$ be given by the condition $\pi^{-1}(x)=R_{x}$. For $r \in R$ and $x \in X(R)$, let $\sigma_{r}(x)$ be the image of r under the natural homomorphism of R onto R_{x}.

[^0]
[^0]: *) Dedicated to Professor K. Asano for the celebration of his sixtieth birthday.

