110. İ-Spaces over Locally Convex Spaces*

By Noboru Yamamoto
College of General Education, Osaka University
(Comm. by Kenjiro Shoda, m. J. A., June 12, 1970)

1. In the previous note [3], we defined the l^{p}-space over a Banach space and used it for a study of polynomial maps of Banach spaces. It seems to be more useful to define a similar space for a locally convex topological vector space. In this note we shall do this.

Let E be a locally convex (topological vector) space and S be its (irreducible) spectrum of seminorms [2]. Then the $n^{\text {th }}$ tensor power $E^{\otimes n}$ of E with the projective topology admits as its spectrum the irreducible hull of the set of seminorms $\left\{p^{\otimes n} \mid \mathfrak{p} \in S\right\}$ where $\mathfrak{p}^{\otimes n}$ is a seminorm defined by $p^{\otimes n}(x)=\inf \left\{\sum p\left(x_{1}^{(i)}\right) \cdots p\left(x_{n}^{(i)}\right) \mid x=\sum x_{1}^{(i)} \otimes \cdots \otimes x_{n}^{(i)}\right\}$ for $x \in E^{\otimes n}$. For any $p, 1 \leq p<\infty$, and for any $p \in S$, we define a real valued function $l^{p} \mathfrak{p}$ on the (algebraic) vector space $\oplus_{n=1}^{\infty} E^{\otimes n}$ by $l^{p} \mathfrak{p}(x)$ $=\left(\sum \mathfrak{p}^{\otimes n}\left(x_{n}\right)^{p}\right)^{1 / p}$ for $x=\sum x_{n}, x_{n} \in E^{\otimes n}$. It is clearly a seminorm. Let $l^{p} S$ be the irreducible hull of seminorms $\left\{l^{p} \mathfrak{p} \mid \mathfrak{p} \in S\right\}$, we define a locally convex space $\bar{l}^{p} E$ to be the set $\left\{x=\sum x_{n} \mid x_{n} \in E^{\otimes n}\right.$ and $l^{p} p(x)<\infty$ for any $\mathfrak{p} \in S\}$ with the spectrum $l^{p} S$, and $\bar{l}_{s}^{q} E$ to be its subspace of symmetric elements. Then the following properties are easily verified.

Proposition 1. If E is a Frechet space, so are $\bar{l}^{p} E$ and $\bar{l}_{s}^{p} E$. If E is Frechet and nuclear, then we have $\left(\bar{l}^{p} E\right)^{\prime} \cong \bar{l}^{q} E^{\prime}$ and $\left(\bar{l}_{s}^{p} E\right)^{\prime} \cong \bar{l}_{s}^{q} E^{\prime}$ where E^{\prime} is the strong dual of E and $1 / p+1 / q=1$.

As usual, we have $\bar{l}^{p} E \subset \bar{l}^{q} E$ if $p \leqq q$, moreover we have
Theorem 1. For any $p, q \geq 1, \tilde{l}^{p} E \subset \bar{l}^{q} E$ and the inclusion is continuous.

Lemma. For any sequence $\left\{a_{n}\right\}$ of positive numbers with $\lim a_{n}^{1 / n}$ $=0$ and for any real $s \geqq l$, we have $\left(\sum a_{n}\right)^{s} \leqq \sum\left(2^{n} a_{n}\right)^{s}$.

This Lemma is easily verified.
Proof of Theorem 1. For any $\mathfrak{p} \in S_{E}$ and $x_{n} \in E^{\otimes n}$, we have $t p \in S_{E}$ for any $t>0$ and $(t \mathfrak{p})^{\otimes n}\left(x_{n}\right)=t^{n} \mathfrak{p}^{\otimes n}\left(x_{n}\right)$, hence $x=\sum x_{n} \in \bar{l}^{p} E$ for some p if and only if $\lim \left(p^{\otimes n}\left(x_{n}\right)\right)^{1 / n}=0$. Then $x \in \bar{l}^{q} E$ for any q. This means that $\bar{l}^{p} E$ and $\bar{l}^{q} E$ coincide with each other as sets. Let $p \geqq q \geqq 1$. Let $a_{n}=\left(p^{\otimes n}\left(x_{n}\right)\right)^{q}$ for an element $x=\sum x_{n} \in \bar{l}^{p} E$ and a seminorm $\mathfrak{p} \in S_{E}$, then $s=p / q \geqq 1, \lim a_{n}^{1 / n}=0$ and $p^{\otimes n}\left(x_{n}\right)^{p}=a_{n}^{S}$ hence, by the above Lemma, we have $\left(l^{q} \mathfrak{p}\left(x_{n}\right)\right)^{p}=\left(\sum \mathfrak{p}^{\otimes n}\left(x_{n}\right)^{q}\right)^{p / q}=\left(\sum a_{n}\right)^{s} \leqq \sum\left(2^{n} a_{n}\right)^{s}$ $=\sum\left((2 \mathfrak{p})^{\otimes n}\left(x_{n}\right)\right)^{p}=\left(l^{p}(2 \mathfrak{p})(x)\right)^{p}$. Let \mathfrak{q} be any seminorm in $l^{q} S_{E}$, then
*) Dedicated to Professor A. Komatu on his sixtieth birthday.

