110. I-Spaces over Locally Convex Spaces^{*)}

By Noboru YAMAMOTO

College of General Education, Osaka University (Comm. by Kenjiro SHODA, M. J. A., June 12, 1970)

1. In the previous note [3], we defined the l^p -space over a Banach space and used it for a study of polynomial maps of Banach spaces. It seems to be more useful to define a similar space for a locally convex topological vector space. In this note we shall do this.

Let E be a locally convex (topological vector) space and S be its (irreducible) spectrum of seminorms [2]. Then the n^{th} tensor power $E^{\otimes n}$ of E with the projective topology admits as its spectrum the irreducible hull of the set of seminorms $\{\mathfrak{p}^{\otimes n} | \mathfrak{p} \in S\}$ where $\mathfrak{p}^{\otimes n}$ is a seminorm defined by $\mathfrak{p}^{\otimes n}(x) = \inf\{\sum \mathfrak{p}(x_1^{(i)}) \cdots \mathfrak{p}(x_n^{(i)}) | x = \sum x_1^{(i)} \otimes \cdots \otimes x_n^{(i)}\}$ for $x \in E^{\otimes n}$. For any $p, 1 \leq p < \infty$, and for any $\mathfrak{p} \in S$, we define a real valued function $l^p\mathfrak{p}$ on the (algebraic) vector space $\bigoplus_{n=1}^{\infty} E^{\otimes n}$ by $l^p\mathfrak{p}(x)$ $= (\sum \mathfrak{p}^{\otimes n}(x_n)^p)^{1/p}$ for $x = \sum x_n, x_n \in E^{\otimes n}$. It is clearly a seminorm. Let l^pS be the irreducible hull of seminorms $\{l^p\mathfrak{p} | \mathfrak{p} \in S\}$, we define a locally convex space $\overline{l^pE}$ to be the set $\{x = \sum x_n | x_n \in E^{\otimes n} \text{ and } l^p\mathfrak{p}(x) < \infty$ for any $\mathfrak{p} \in S\}$ with the spectrum l^pS , and $\overline{l_s^e}E$ to be its subspace of symmetric elements. Then the following properties are easily verified.

Proposition 1. If E is a Frechet space, so are $\bar{l}^p E$ and $\bar{l}^p_s E$. If E is Frechet and nuclear, then we have $(\bar{l}^p E)' \cong \bar{l}^q E'$ and $(\bar{l}^p_s E)' \cong \bar{l}^q_s E'$ where E' is the strong dual of E and 1/p+1/q=1.

As usual, we have $\bar{l}^{p}E \subset \bar{l}^{q}E$ if $p \leq q$, moreover we have

Theorem 1. For any $p, q \ge 1$, $\bar{l}^p E \subset \bar{l}^q E$ and the inclusion is continuous.

Lemma. For any sequence $\{a_n\}$ of positive numbers with $\lim a_n^{1/n} = 0$ and for any real $s \ge l$, we have $(\sum a_n)^s \le \sum (2^n a_n)^s$.

This Lemma is easily verified.

Proof of Theorem 1. For any $\mathfrak{p} \in S_E$ and $x_n \in E^{\otimes n}$, we have $t\mathfrak{p} \in S_E$ for any t > 0 and $(t\mathfrak{p})^{\otimes n}(x_n) = t^n \mathfrak{p}^{\otimes n}(x_n)$, hence $x = \sum x_n \in \overline{l}^p E$ for some p if and only if $\lim (\mathfrak{p}^{\otimes n}(x_n))^{1/n} = 0$. Then $x \in \overline{l}^q E$ for any q. This means that $\overline{l}^p E$ and $\overline{l}^q E$ coincide with each other as sets. Let $p \ge q \ge 1$. Let $a_n = (\mathfrak{p}^{\otimes n}(x_n))^q$ for an element $x = \sum x_n \in \overline{l}^p E$ and a seminorm $\mathfrak{p} \in S_E$, then $s = p/q \ge 1$, $\lim a_n^{1/n} = 0$ and $\mathfrak{p}^{\otimes n}(x_n)^p = a_n^S$ hence, by the above Lemma, we have $(l^q \mathfrak{p}(x_n))^p = (\sum \mathfrak{p}^{\otimes n}(x_n)^q)^{p/q} = (\sum a_n)^s \le \sum (2^n a_n)^s = \sum ((2\mathfrak{p})^{\otimes n}(x_n))^p = (l^p(2\mathfrak{p})(x))^p$. Let \mathfrak{q} be any seminorm in $l^q S_E$, then

^{*)} Dedicated to Professor A. Komatu on his sixtieth birthday.