153. Absolute Summability by Logarithmic Method of Fourier Series

By Masako Izumi and Shin-ichi Izumi
(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1970)

1. Introduction and Theorems.
1.1. Let $\sum a_{n}$ be an infinite series and $\left(s_{n}\right)$ be the sequence of partial sums. If the function

$$
\begin{equation*}
L(x)=\frac{-1}{\log (1-x)} \sum_{n=1}^{\infty} \frac{s_{n} x^{n}}{n} \tag{1}
\end{equation*}
$$

is of bounded variation on an interval $(c, 1)$, then the series $\sum a_{n}$ is said to be absolutely summable by logarithmic method or $|L|$-summable (see [1] and [2]).

Let f be an even integrable function with period 2π and its Fourier series be $\sum a_{n} \cos n x$. R. Mohanty and J. N. Patnaik [2] have proved the following

Theorem 1. If the function

$$
\begin{equation*}
\frac{1}{t \log (2 \pi / t)} \int_{t}^{\pi} \frac{f(u) d u}{2 \sin u / 2}=\frac{g(t)}{t \log (2 \pi / t)} \tag{2}
\end{equation*}
$$

is integrable in the interval $(0, \pi)$, then the Fourier series of f is $|L|$-summable at the origin.

Our first object of this paper is to give an alternative proof of this theorem.
1.2. Let $\left(p_{n}\right)$ be a sequence of non-negative numbers such that

$$
p(x)=\sum_{n=1}^{\infty} p_{n} x^{n}<\infty \quad \text { for } \quad 0<x<1
$$

If the function

$$
\begin{equation*}
P(x)=\frac{1}{p(x)} \sum_{n=1}^{\infty} p_{n} s_{n} x^{n} \tag{3}
\end{equation*}
$$

is of bounded variation on an interval $(c, 1)(0<c<1)$, then we say that the series $\sum a_{n}$ is absolutely Perron summable or $|P|$-summable. According as $p_{1}=1$ or $p_{n}=1 / n$, then $|P|$-summability reduces to $|A|-$ summability or $|L|$-summability, respectively.

Theorem 1 is generalized as follows:
Theorem 2. Suppose that (i) the sequence ($n p_{n}$) is of bounded variation and that (ii) there is an $a, 0<a<1$, such that
(4)

$$
(1-x)^{a} p(x) \downarrow \quad \text { as } \quad x \uparrow 1
$$

If $g(t) / t p(1-t)$ is integrable in the interval $(0, \pi)$, then the Fourier series of f is $|P|$-summable at the origin.

