149. A Space of Sequences given by Pairs of Unitary Operators

By Takashi ITO and Bert M. SCHREIBER*) Department of Mathematics, Wayne State University Detroit, Michigan

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

1. Introduction. In a recent note [5] on affine transformations with dense orbits R. Sato makes the following statement (Lemma 1). Let H be a complex (separable) Hilbert space, and let A be a bounded operator and U_1 and U_2 unitary operators on H. Given $\xi, \eta \in H$ there is a complex, regular Borel measure μ on the two-dimensional torus T^2 whose Fourier-Stieltjes transform is given by

(1) $\hat{\mu}(m,n) = \langle AU_1^m \xi, U_2^n \eta \rangle, \quad -\infty < m, n < \infty.$ The purpose of this paper is to point out some counterexamples to this proposition and to examine more carefully the class of sequences of the type appearing on the right-hand side of (1).

We refer the reader to [4] for some background and related results on affine transformations. Here let us just recall that doubly-indexed sequences of the type indicated in (1) arise in the study of affine transformations on locally compact groups as follows. Let G be a locally compact group and $\tau(x)$ a *bi*-continuous, Haar-measure-preserving automorphism of G. Let $a \in G$, and consider the affine transformation $T(x) = a\tau(x), x \in G$. Denote the left regular representation of G on $L^2(G)$ by V, and let U_1 and U_2 be the unitary operators on $L^2(G)$ given by composition with T(x) and $\tau(x)$, respectively.

Lemma [5]. $U_2^{-1}VU_1 = V \circ T$. Thus for $f, g \in L^2(G)$ we have

 $\langle V \circ T^n(x) f, g
angle = \langle V(x) U_1^n f, U_2^n g
angle, \qquad -\infty < n < \infty, \ x \in G.$

The fact that a measure μ satisfying (1) need not exist for all choices of A, U_1 and U_2 is immediate from the following

Proposition. Let $(a_n)_{n=-\infty}^{\infty}$ be any bounded sequence of complex numbers. There exist a bounded operator A and a unitary operator U on the Hilbert space H and $\xi, \eta \in H$ such that

 $a_n \!=\! \langle \! A U^n \xi, U^n \eta
angle, \qquad -\!\infty \!<\! n \!<\! \infty.$

Proof. Let *H* denote the bilateral sequence space $l_2(-\infty, \infty)$ with standard basis $\{\cdots, e_{-1}, e_0, e_1, \cdots\}$. Let *U* be the bilateral shift operator: $Ue_n = e_{n+1}, -\infty < n < \infty$, and let *A* be the bounded operator on *H* given by coordinatewise multiplication with the given sequence $(a_n)_{n=-\infty}^{\infty}$. Then

^{*)} Research supported by National Science Foundation Grant No. GP-13741.