149. A Space of Sequences given by Pairs of Unitary Operators

By Takashi Ito and Bert M. Schreiber*)
Department of Mathematics, Wayne State University Detroit, Michigan

(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1970)

1. Introduction. In a recent note [5] on affine transformations with dense orbits R. Sato makes the following statement (Lemma 1). Let H be a complex (separable) Hilbert space, and let A be a bounded operator and U_{1} and U_{2} unitary operators on H. Given $\xi, \eta \in H$ there is a complex, regular Borel measure μ on the two-dimensional torus T^{2} whose Fourier-Stieltjes transform is given by

$$
\begin{equation*}
\hat{\mu}(m, n)=\left\langle A U_{1}^{m} \xi, U_{2}^{n} \eta\right\rangle, \quad-\infty<m, n<\infty . \tag{1}
\end{equation*}
$$

The purpose of this paper is to point out some counterexamples to this proposition and to examine more carefully the class of sequences of the type appearing on the right-hand side of (1).

We refer the reader to [4] for some background and related results on affine transformations. Here let us just recall that doubly-indexed sequences of the type indicated in (1) arise in the study of affine transformations on locally compact groups as follows. Let G be a locally compact group and $\tau(x)$ a bi-continuous, Haar-measure-preserving automorphism of G. Let $a \in G$, and consider the affine transformation $T(x)=a \tau(x), x \in G$. Denote the left regular representation of G on $L^{2}(G)$ by V, and let U_{1} and U_{2} be the unitary operators on $L^{2}(G)$ given by composition with $T(x)$ and $\tau(x)$, respectively.

Lemma [5]. $\quad U_{2}^{-1} V U_{1}=V \circ T$. Thus for $f, g \in L^{2}(G)$ we have

$$
\left\langle V \circ T^{n}(x) f, g\right\rangle=\left\langle V(x) U_{1}^{n} f, U_{2}^{n} g\right\rangle, \quad-\infty<n<\infty, x \in G .
$$

The fact that a measure μ satisfying (1) need not exist for all choices of A, U_{1} and U_{2} is immediate from the following

Proposition. Let $\left(a_{n}\right)_{n=-\infty}^{\infty}$ be any bounded sequence of complex numbers. There exist a bounded operator A and a unitary operator U on the Hilbert space H and $\xi, \eta \in H$ such that

$$
a_{n}=\left\langle A U^{n} \xi, U^{n} \eta\right\rangle, \quad-\infty<n<\infty .
$$

Proof. Let H denote the bilateral sequence space $l_{2}(-\infty, \infty)$ with standard basis $\left\{\cdots, e_{-1}, e_{0}, e_{1}, \cdots\right\}$. Let U be the bilateral shift operator: $U e_{n}=e_{n+1},-\infty<n<\infty$, and let A be the bounded operator on H given by coordinatewise multiplication with the given sequence $\left(a_{n}\right)_{n=-\infty}^{\infty}$. Then
*) Research supported by National Science Foundation Grant No. GP-13741.

