144. On the Index of a Semi-free S¹-action

By Katsuo KAWAKUBO and Fuichi UCHIDA Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1970)

- 1. Introduction. Let G be a compact Lie group, M^n a closed smooth n-manifold and $\varphi: G \times M^n \to M^n$ a smooth action. Then the fixed point set is a disjoint union of smooth k-manifolds F^k , $0 \le k \le n$.
- P. E. Conner and E. E. Floyd [2] obtained several properties of fixed point sets of smooth involutions and one of their results is the following.

Suppose that $T: M^{2k} \to M^{2k}$ is a smooth involution on a closed manifold of odd Euler characteristic. Then some component of the fixed point set is of dimension $\geq k$.

Now we consider semi-free smooth S^1 -actions on oriented manifolds and we claim the following

Theorem 1.1. Let M^n be an oriented closed smooth n-manifold and $\varphi: S^1 \times M^n \to M^n$ a semi-free smooth action. Then each k-dimensional fixed point set F^k can be canonically oriented and the index of M^n is the sum of indices of F^k , that is,

$$I(M^n) = \sum_{k=0}^n I(F^k).$$

Theorem 1.2. Suppose that $\varphi: S^1 \times M^{4k} \to M^{4k}$ is a semi-free smooth S^1 -action on an oriented closed manifold of non-zero index. Then some component of the fixed point set is of dimension $\geq 2k$.

Detailed proof will appear elsewhere.

2. Outline of the proof of Theorem 1.1.

Let S^1 and D^2 denote the unit circle and the unit disk in the field of complex numbers. Regard S^1 as a compact Lie group. Let M^n be an oriented closed smooth n-manifold and $\varphi: S^1 \times M^n \to M^n$ a smooth action. The action φ is called semi-free if it is free outside the fixed point set. Then we have the following ([4], Lemma 2.2).

Lemma 2.1. The normal bundle of each component of the fixed point set in M^n has naturally a complex structure, such that the induced S^1 -action on this bundle is a scalar multiplication.

From this lemma, a codimension of each component of the fixed point set in M^n is even. Let ν^k denote the complex normal bundle to F^{n-2k} . Then ν^k is canonically oriented and F^{n-2k} can be so oriented that the bundle map $\tau(F^{n-2k}) \oplus \nu^k \to \tau(M^n)$ is orientation preserving, where $\tau(M)$ denotes the tangent bundle of M.