144. On the Index of a Semi-free S^{1}-action

By Katsuo Kawakubo and Fuichi Uchida
Osaka University

(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1970)

1. Introduction. Let G be a compact Lie group, M^{n} a closed smooth n-manifold and $\varphi: G \times M^{n} \rightarrow M^{n}$ a smooth action. Then the fixed point set is a disjoint union of smooth k-manifolds $F^{k}, 0 \leqq k \leqq n$.
P. E. Conner and E. E. Floyd [2] obtained several properties of fixed point sets of smooth involutions and one of their results is the following.

Suppose that $T: M^{2 k} \rightarrow M^{2 k}$ is a smooth involution on a closed manifold of odd Euler characteristic. Then some component of the fixed point set is of dimension $\geqq k$.

Now we consider semi-free smooth S^{1}-actions on oriented manifolds and we claim the following

Theorem 1.1. Let M^{n} be an oriented closed smooth n-manifold and $\varphi: S^{1} \times M^{n} \rightarrow M^{n}$ a semi-free smooth action. Then each k-dimensional fixed point set F^{k} can be canonically oriented and the index of M^{n} is the sum of indices of F^{k}, that is,

$$
I\left(M^{n}\right)=\sum_{k=0}^{n} I\left(F^{k}\right)
$$

Theorem 1.2. Suppose that $\varphi: S^{1} \times M^{4 k} \rightarrow M^{4 k}$ is a semi-free smooth S^{1}-action on an oriented closed manifold of non-zero index. Then some component of the fixed point set is of dimension $\geqq 2 k$.

Detailed proof will appear elsewhere.
2. Outline of the proof of Theorem 1.1.

Let S^{1} and D^{2} denote the unit circle and the unit disk in the field of complex numbers. Regard S^{1} as a compact Lie group. Let M^{n} be an oriented closed smooth n-manifold and $\varphi: S^{1} \times M^{n} \rightarrow M^{n}$ a smooth action. The action φ is called semi-free if it is free outside the fixed point set. Then we have the following ([4], Lemma 2.2).

Lemma 2.1. The normal bundle of each component of the fixed point set in M^{n} has naturally a complex structure, such that the induced S^{1}-action on this bundle is a scalar multiplication.

From this lemma, a codimension of each component of the fixed point set in M^{n} is even. Let ν^{k} denote the complex normal bundle to $F^{n-2 k}$. Then ν^{k} is canonically oriented and $F^{n-2 k}$ can be so oriented that the bundle map $\tau\left(F^{n-2 k}\right) \oplus \nu^{k} \rightarrow \tau\left(M^{n}\right)$ is orientation preserving, where $\tau(M)$ denotes the tangent bundle of M.

