No. 7]

143. Bordism Algebra of Involutions

By Fuichi UCHIDA Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1970)

1. Introduction. Let \mathfrak{N}_* denote the unoriented Thom bordism ring and let $\mathfrak{N}_*(Z_2)$ denote the unoriented bordism group of fixed point free involutions. Then $\mathfrak{N}_*(Z_2)$ is a free \mathfrak{N}_* -module with basis $\{[S^n, a]\}_{n\geq 0}$, where $[S^n, a]$ is the bordism class of the antipodal involution on the *n*-sphere ([2], Theorem 23.2).

If we regard $\Re_*(Z_2)$ as the bordism group of principal Z_2 -bundles over closed manifolds, the tensor product of principal Z_2 -bundles induces a multiplication in $\Re_*(Z_2)$, making it an algebra over \Re_* . Explicitly, we consider involutions T_1 and T_2 on M_1^m and M_2^n respectively, then both $T_1 \times 1$ and $1 \times T_2$ induce the same involution T on $M_1^m \times M_2^n/T_1 \times T_2$. We have then the multiplication

 $[M_1^m, T_1][M_2^n, T_2] = [M_1^m \times M_2^n / T_1 \times T_2, T].$

J. C. Su [6] stated that $\mathfrak{N}_*(Z_2)$ is an exterior algebra over \mathfrak{N}_* with generators in each dimension 2^n $(n=0,1,2,\cdots)$ and C. S. Hoo [4] showed a multiplicative relation in $\mathfrak{N}_*(Z_2)$ which is equivalent to (2.6) below. In this note, we show the following relation.

Theorem.
$$[S^{2n+1}, a] = [S^1, a] \cdot \left(\sum_{k=0}^n [P^{2k}][S^{2n-2k}, a]\right)$$
 for all n .

As an application we show z_{2k} $(k=1,2,3,\cdots)$ in the following result due to Boardman ([1], Theorem 8.1) is nothing else than $[P^{2k}] = [S^{2k}/a]$:

There exist elements $z_2, z_4, z_5, z_6, z_8, \cdots$ in \Re_* , uniquely defined by the condition that

$$P = w_1 + z_2 w_1^3 + z_4 w_1^5 + z_5 w_1^6 + z_6 w_1^7 + z_8 w_1^9 + \cdots$$

(omitting terms of the form $z_{k-1}w_1^k$ when k is a power of 2) is a primitive element in the Hopf algebra $\mathfrak{N}^*(BO(1))$. Moreover, these elements z_k are a set of polynomial generators for \mathfrak{N}_* .

2. Bordism algebra of involutions. Let us summarize here what is known about \mathfrak{N}_* -module $\mathfrak{N}_*(Z_2)$. It has been shown that $\mathfrak{N}_*(Z_2)$ is a free \mathfrak{N}_* -module with basis $[S^n, a]$ $(n=0, 1, 2, \cdots)$, where S^n is an *n*-sphere and *a* the antipodal involution on S^n . Let

$$I: \mathfrak{N}_*(Z_2) \to \mathfrak{N}_*(Z_2)$$

be the Smith homomorphism ([2], Theorem 26.1). This is an \mathfrak{N}_* -module homomorphism of degree -1, and it can be described as follows. Suppose (M^n, T) is a differentiable fixed point free involution on a