143. Bordism Algebra of Involutions

By Fuichi Uchida
Osaka University

(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1970)

1. Introduction. Let \mathfrak{R}_{*} denote the unoriented Thom bordism ring and let $\mathfrak{R}_{*}\left(Z_{2}\right)$ denote the unoriented bordism group of fixed point free involutions. Then $\mathfrak{n}_{*}\left(Z_{2}\right)$ is a free \mathfrak{N}_{*}-module with basis $\left\{\left[S^{n}, a\right]\right\}_{n \geq 0}$, where $\left[S^{n}, a\right]$ is the bordism class of the antipodal involution on the n-sphere ([2], Theorem 23.2).

If we regard $\mathfrak{N}_{*}\left(Z_{2}\right)$ as the bordism group of principal Z_{2}-bundles over closed manifolds, the tensor product of principal Z_{2}-bundles induces a multiplication in $\mathfrak{R}_{*}\left(Z_{2}\right)$, making it an algebra over \mathfrak{R}_{*}. Explicitly, we consider involutions T_{1} and T_{2} on M_{1}^{m} and M_{2}^{n} respectively, then both $T_{1} \times 1$ and $1 \times T_{2}$ induce the same involution T on $M_{1}^{m} \times M_{2}^{n} / T_{1} \times T_{2}$. We have then the multiplication

$$
\left[M_{1}^{m}, T_{1}\right]\left[M_{2}^{n}, T_{2}\right]=\left[M_{1}^{m} \times M_{2}^{n} / T_{1} \times T_{2}, T\right]
$$

J. C. Su [6] stated that $\mathfrak{R}_{*}\left(Z_{2}\right)$ is an exterior algebra over \mathfrak{R}_{*} with generators in each dimension $2^{n}(n=0,1,2, \cdots)$ and C. S. Hoo [4] showed a multiplicative relation in $\mathfrak{R}_{*}\left(Z_{2}\right)$ which is equivalent to (2.6) below. In this note, we show the following relation.

Theorem. $\quad\left[S^{2 n+1}, a\right]=\left[S^{1}, a\right] \cdot\left(\sum_{k=0}^{n}\left[P^{2 k}\right]\left[S^{2 n-2 k}, a\right]\right)$ for all n.
As an application we show $z_{2 k}(k=1,2,3, \ldots)$ in the following result due to Boardman ([1], Theorem 8.1) is nothing else than $\left[P^{2 k}\right]=\left[S^{2 k} / a\right]$:

There exist elements $z_{2}, z_{4}, z_{5}, z_{6}, z_{8}, \cdots$ in \mathfrak{n}_{*}, uniquely defined by the condition that

$$
P=w_{1}+z_{2} w_{1}^{3}+z_{4} w_{1}^{5}+z_{5} w_{1}^{6}+z_{6} w_{1}^{7}+z_{8} w_{1}^{9}+\cdots
$$

(omitting terms of the form $z_{k-1} w_{1}^{k}$ when k is a power of 2) is a primitive element in the Hopf algebra $\mathfrak{R}^{*}(B O(1))$. Moreover, these elements z_{k} are a set of polynomial generators for \mathfrak{N}_{*}.
2. Bordism algebra of involutions. Let us summarize here what is known about \mathfrak{n}_{*}-module $\mathfrak{n}_{*}\left(Z_{2}\right)$. It has been shown that $\mathfrak{n}_{*}\left(Z_{2}\right)$ is a free Ω_{*}-module with basis $\left[S^{n}, a\right](n=0,1,2, \ldots)$, where S^{n} is an n-sphere and a the antipodal involution on S^{n}. Let

$$
\Delta: \mathfrak{N}_{*}\left(Z_{2}\right) \rightarrow \mathfrak{N}_{*}\left(Z_{2}\right)
$$

be the Smith homomorphism ([2], Theorem 26.1). This is an \mathfrak{R}_{*}-module homomorphism of degree -1 , and it can be described as follows. Suppose (M^{n}, T) is a differentiable fixed point free involution on a

