191. Noetherian QF-3 Rings and Two-sided QuasiFrobenius Maximal Quotient Rings*

By Kiiti Morita
(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1970)

The notion of QF-3 rings was introduced originally by R. M. Thrall [13] for the case of finite dimensional algebras over a field. Recently this notion has been extended to the case of general rings in various ways (cf. [2], [5], [12]). For example, a ring A is called left QF-3 or left QF-3' according as A has a faithful, projective injective left ideal or the injective envelope of the left A-module $A, E\left({ }_{A} A\right)$, is torsionless, and a ring which is left QF-3 by any one of the definitions given in the literature is left QF-3'. The notion of QF-3' rings, however, does not seem to fit Noetherian rings.

In this paper we shall call a ring A a left QF-3 ring if $E\left({ }_{A} A\right)$ is flat. Right QF-3 rings are defined similarly. For example, the ring of rational integers is left QF-3 in our sense, but not left QF-3' in the sense mentioned above. As for Noetherian QF-3 rings, we shall prove the following theorems.

Theorem 1. Let A be a left Noetherian ring. If A is left $Q F-3$, then A is right QF-3.

Theorem 2. Let A be a left Noetherian, left $Q F-3$ ring. Then we have
(1) $\quad \operatorname{Hom}_{A}\left(\left[\operatorname{Ext}_{A}^{n}\left({ }_{A} X,{ }_{A} A\right)\right]_{A}, E\left(A_{A}\right)\right)=0, \quad n=1,2, \cdots$
for every finitely generated left A-module X.
According to Jans [4], the dual of every finitely generated right A module is reflexive if and only if
$\operatorname{Hom}_{A}\left(\left[\operatorname{Ext}_{A}^{1}\left(X,{ }_{A} A\right)\right]_{A}, A_{A}\right)=0$
for every finitely generated torsionless left A-module X. ${ }^{1)}$ Hence we obtain from Theorem 2 the following

Corollary 3. Let A be a left Noetherian left $Q F-3$ ring. Then the dual of every finitely generated right A-module is reflexive.

The above notion of QF-3 rings is useful also for non-Noetherian rings.

As is known as a theorem of R. E. Johnson, the maximal left

[^0]
[^0]: *) Dedicated to Professor K. Asano on his sixtieth birthday.

 1) This result is true without any finiteness condition on A, although Jans assumes A to be left and right Noetherian. This fact has already been used in our previous paper [9].
