218. On a Characterization of a Potential Theoretic Measure

By Takasi KAYANO*) and Shirô OGAWA**)

(Comm. by Kinjirô Kunugi, m. j. a., Nov. 12, 1970)

Introduction. In the first place, G. Anger [1] pointed out that continuous potentials play an important role in the theory of potential. We are concerned with a kernel $\phi(x, y)$ with continuous potentials in a locally compact space. In the case, we can define a certain family of potential theoretic positive measures $G^+(\phi)$ of which the adjoint potentials are integrable by all measures generating continuous potentials. The aim of this paper is to characterize the family of measures $G^{+}(\phi)$, which answers at the same time for a question posed by G. Anger [2] in the case that ϕ are Newtonian kernel ϕ_N and a kernel Φ_W associated with the fundamental solution of the heat equation. For the Newtonian kernel ϕ_N , H. Cartan [4] gave the following well known result; In order that a positive measure μ is an element of $G^{+}(\Phi_{N})$, it is necessary and sufficient that the potential of μ is not identically infinity. But the above result does not hold for the kernel Φ_{W} and then we must find another characterization.

1. Notations and definitions. Let Ω be a locally compact Hausdorff space and $\phi(x, y)$ a measurable function in $\Omega \times \Omega$. The kernel $\check{\phi}(x, y)$ defined by $\check{\phi}(x, y) = \phi(y, x)$ is called the adjoint kernel. Setting $\check{\phi}^+(x, y) = \sup(\phi(x, y), 0)$ and $\phi^-(x, y) = -\inf(\phi(x, y), 0)$, we can denote $\phi(x, y) = \phi^+(x, y) - \phi^-(x, y)$. The ϕ -potential of a positive Radon measure μ in Ω is defined by

 $\phi\mu(x) \!=\! \int^*\! \phi(x,y) d\mu(y),$

provided that $\phi \mu^+(x)$ and $\phi \mu^-(x)$ are not infinity at the same time. The adjoint potential $\check{\phi}\mu(x)$ is defined by the analogous way. $\phi(x, y)$ is called S-kernel if there exists at least such a positive measure λ that the support $S\lambda$ is compact and the potentials $\phi\lambda^+(x)$ and $\phi\lambda^-(x)$ are continuous in Ω . In the case that $\phi(x, y)$ is S-kernel, we can consider the following classes of measures.

 $F^+(\phi) = \{\lambda; \lambda \geq 0, S\lambda \text{ compact, } \phi\lambda^+(x) \text{ and } \phi\lambda^-(x) \text{ continuous in } \Omega\}$

 $G^{+}(\phi) = \Big\{ \mu; \mu \ge 0, \int^{*} \check{\phi} \mu^{+} d\lambda \text{ and } \int^{*} \check{\phi}^{-} \mu d\lambda < +\infty \text{ for any } \lambda \in F^{+}(\phi) \Big\}.$ $\phi(x, y) \text{ is called } T\text{-kernel if } \phi(x, y) \text{ is non-negative } S\text{-kernel and for}$

^{*)} Faculty of Literature and Science, Shimane University.

^{**)} Department of Engineering, Kobe University.