216. Neutron Transport Process on Bounded Homogeneous Domain

By Takakazu Mori
Department of Mathematics, Kyoto Sangyo University
(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1970)

1. The neutron transport process has been studied by Harris ([1]) and Mullikin ([5]) as an application of the theory of discrete-time branching processes. The main problems are the asymptotic behavior of the number of neutrons, the extinction probability and the rate of convergence of the extinction probability at time t to the extinction probability. In this paper we consider similar problems for a monoenergetic and isotropic neutron transport process on a bounded homogeneous domain. We will formulate the model as a continuous-time branching process and apply the general theory of such processes ([2]). Main results are the theorems $1 \sim 5$ below. It will be seen that the expected number of new-born neutrons plays an essential role in the above problems. This is a typical property of branching processes, which is well known for Galton-Watson processes.
2. Let D be a bounded closed convex domain in the three-dimensional Euclidian space \boldsymbol{R}^{3} with a smooth boundary and Ω be the unit sphere in \boldsymbol{R}^{3}. We denote by G the product space $D \times \Omega$ and ∂G the set (x, ω) where x belongs to the boundary of D and ω is a direction exiting the domain; i.e., $\left(\omega, n_{x}\right) \geqq 0$ where n_{x} is the direction of the outernormal at x. We formulate our model of neutron transport process as a continuous-time branching process as follows; a particle at $x \in D$ starting with unit speed in the direction $\omega^{*)}$ will, at a random time T which is exponentially distributed with mean σ^{-1}, be absorbed, scattered, or multiplied by fission. If it leaves the domain D before T, then it is absorbed. The direction of new particles is supposed to be isotropically distributed. Each of new particles, independently each other, performs a similar motion as the original one. We can construct such a branching process on a suitable probability space ([2]) and every probabilistic argument below is based on this process.

Let $F[\xi]=\sum_{n=0}^{\infty} p_{n} \xi^{n}$ where p_{n} is the probability that n neutrons are produced when fission occurs. (In particular p_{0} is the probability of absorption and p_{1} the probability of scattering.) We will assume $F^{\prime}[1]<\infty$ and $p_{0}+p_{1}<1$. The first assumption guarantees that the

[^0]
[^0]: *) This statement will be simplified below as "starting at (x, ω)."

