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First we give a new characterization of regular semigroups.?

Theorem 1. A semigroup S is regular if and only if the relation
(1) LNR=RSL
holds for every left ideal L and every right ideal R of S.

Proof. Let S be a regular semigroup. Then the well known
characterization due to L. Kovacs and K. Iséki implies that
(2) L=SL
for any left ideal L of S, and similarly we have
(3) R=RS
for any right ideal R of S. (2) and (3) imply
(4) LNR=SLNRS=(RS)SL)=RSL,

i.e., the condition (1) is necessary.

Conversely, let S be a semigroup with property (1) for any left
ideal L and any right ideal R of S. To show that S is regular, let a
be an arbitrary element of S. Then (1) implies
(5) a ¢ L(a) N R(a)=R(a)SL(a) S aSa,
that is, S is a regular semigroup.

Next we give a similar characterization of semigroups which are
semilattices of groups.?

Theorem 2. A semigroup S is a semilattice of groups if and only
if the relation
(6) LNR=LSR
holds for every left ideal L and every right ideal R of S.

Proof. Let S be a semigroup which is a semilattice of groups.
It is known that every one-sided ideal of S is two-sided and S is regular
(see [1] or [4]). This implies that

(7) SI=I=1IS
holds for any ideal I of S. Hence we get
(8) I.N1,=18SNSI,=1SI,

for any couple of (two-sided) ideals of S, i.e. the condition (6) holds.
Conversely, let S be a semigroup with property (6) for any left
ideal L and any right ideal R of S. Then (6) implies that L=LS? and

1) For the notation and terminology we refer to [1].
2) For other characterizations of semigroups which are semilattices of
groups, see [3]-[5].



