209. A Note on C-compact Spaces

By Shozo Sakai

Department of Mathematics, Shizuoka University

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1970)

According to G. Viglino [7], a topological space (X, \mathcal{T}) is said to be *C*-compact if given a closed set A of X and a \mathcal{T} -open covering \mathcal{U} of A, there is a finite number of elements of \mathcal{U} , say $U_i, 1 \leq i \leq n$, with $A \subset \bigcup_{i=1}^{n} \overline{U}_i$. It was shown by Viglino that in Hausdorff spaces the following implications hold and neither of them is reversible:

compact \Rightarrow *C*-compact \Rightarrow minimal Hausdorff. Here a space *X* is *minimal Hausdorff* if *X* is Hausdorff and each open filter-base on *X* (i.e. a filter-base composed exclusively of open sets of *X*) with a unique adherent point is convergent.

The main results of this note are that (1) the product of a C-compact space and a compact space need not be C-compact in general, and that (2) there exist minimal Hausdorff spaces of arbitrary infinite cardinality which are not C-compact.

Theorem 1. For any topological space X, the following properties of X are equivalent:

(1) X is C-compact,

(2) if A is a closed set of X and \mathcal{F} a family of closed sets of X with $\cap \mathcal{F} \cap A = \emptyset$, then there is a finite number of elements of \mathcal{F} , say F_i , $1 \leq i \leq n$, with $\bigcap_{i=1}^n (\operatorname{Int} F_i) \cap A = \emptyset$.

(3) if A is a closed set of X and \mathcal{G} an open filter-base on X whose elements have non-empty traces with A, then there is an adherent point of \mathcal{G} in A.

Proof. (1) \Rightarrow (2). Let A be a closed subset of a C-compact space X and \mathcal{F} a family of closed sets of X with $\cap \mathcal{F} \cap A = \emptyset$. Since $\mathcal{U} = \{X - F \mid F \in \mathcal{F}\}$ is a family of open sets of X covering A, there is a finite number of elements of \mathcal{U} , say $U_i = X - F_i$, $1 \leq i \leq n$, with $\bigcup_{i=1}^n \overline{U}_i \supset A$. Therefore, $\bigcap_{i=1}^n (\operatorname{Int} F_i) = X - \bigcup_{i=1}^n \overline{U}_i \subset X - A$.

(2) \Rightarrow (3). Assume that there exist a closed set A and an open filter-base \mathcal{G} on X having no adherent point in A whose elements have non-empty traces with A. Since $\mathcal{F} = \{\overline{G} \mid G \in \mathcal{G}\}$ is a family of closed sets of X with $\cap \mathcal{F} \cap A = \emptyset$, there is a finite number of elements of \mathcal{F} , say $F_i = \overline{G}_i$, $1 \leq i \leq n$, with $\bigcap_{i=1}^n (\operatorname{Int} F_i) \cap A = \emptyset$. Then we have $\bigcap_{i=1}^n G_i \cap A = \emptyset$. Since \mathcal{G} is a filter-base, there is an element $G \in \mathcal{G}$ with $G \cap A = \emptyset$. This contradicts the assumption on \mathcal{G} .

(3) \Rightarrow (1). Assume that X is not C-compact. There are a closed