13. Some Radii Associated with Polyharmonic Equations

By Shirô Ogawa,*' Takashi Kayano,**' and Ichizô Yotsuya***'

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1971)

Introduction. G. Pólya and G. Szegö [2] defined the inner radius of a bounded domain by a conformal correspondence from the domain to a disk and showed that it can be also given by the Green's function of the domain relative to the Laplace's equation $\Delta u=0$. In addition, they defined the biharmonic inner radius of a domain by the Green's function of the domain concerning the biharmonic equation $\Delta^2 u=0$. Using the results, they calculated the ordinary inner and biharmonic inner radii of a nearly circular domain. The aim of this paper is to extend the above results. In the first place, we obtain the Green's function of a disk relative to the *n*-harmonic equation $\Delta^n u=0$ and define the *n*-harmonic inner radius of a domain. On the base of the results, we compute the *n*-harmonic inner radius of a nearly circular domain and it is remarkable that it is monotonously decreasing with respect to integer *n*.

1. Inner radii associated with polyharmonic equations.

We use the following notations hereafter. Let D be a bounded domain, C the boundary of D, a an inner point of D, z the variable point in D and r the distance from a to z.

Definition 1. The function satisfying following two conditions is called the Green's function of D with the pole a relative to the *n*-harmonic equation $\Delta^n u = 0$.

(1) The function has in a neighborhood of a the form $r^{2(n-1)} \log r + h_n(z)$,

where the function $h_n(z)$ satisfies the equation $\Delta^n u = 0$ in D.

(2) On the boundary C, the function and all its normal derivatives of order $\leq n-1$ vanish.

Theorem 1. If D is the disk |z| < R in the complex z-plane, the Green's function $G_n(a, z)$ of D with the pole a relative to the equation $\Delta^n u = 0$ is as follows,

$$egin{aligned} G_n(a,z) = & |z\!-\!a|^{2(n-1)} \log \left| rac{R(z\!-\!a)}{R^2\!-\!ar a z}
ight| \ & -rac{1}{2} \sum_{k=1}^{n-1} rac{|z\!-\!a|^{2(n-k-1)}}{kR^{2k}} \{ |R(z\!-\!a)|^2\!-\!|R^2\!-\!ar a z|^2 \}^k. \end{aligned}$$

^{*)} Department of Engineering, Kobe University.

^{**)} Department of Literature and Science, Shimane University.

^{***)} Osaka Technical College.