10. On Semilattices of Groups. II

By Sándor Lajos
K. Marx University of Economics, Budapest, Hungary
(Comm. by Kinjirô Kunugı, M. J. A., Jan. 12, 1971)

This note is a continuation of, and is written in the same terminology as, the author's earlier paper [1]. There was proved the following result.

Theorem A. A semigroup S is a semilattice of groups if and only if the intersection of any two bi-ideals of S equals to their product.

This criterion has the following consequence.
Corollary. Let S be a semilattice of groups. Then

$$
\begin{equation*}
\bigcap_{i=1}^{k} B_{i}=\prod_{i=1}^{k} B_{i} \tag{1}
\end{equation*}
$$

holds for any k bi-ideals B_{1}, \cdots, B_{k} of $S(k$ is an arbitrary fixed positive integer greater than one).

Here we show that property (1) is a necessary and sufficient condition for a semigroup S to be a semilattice of groups. First we prove this statement in case of $k=4$. The other cases can similarly be proved.

Theorem 1. A semigroup S is a semilattice of groups if and only if the relation

$$
\begin{equation*}
B_{1} \cap B_{2} \cap B_{3} \cap B_{4}=B_{1} B_{2} B_{3} B_{4} \tag{2}
\end{equation*}
$$

holds for any four bi-ideals $B_{1}, B_{2}, B_{3}, B_{4}$ of S.
Proof. The necessity of the condition (2) is implied by the above Corollary of Theorem A.

Sufficiency. Let S be a semigroup with property (2) for every quadruplet of bi-ideals in S. Then (2) implies

$$
\begin{equation*}
B=S B S^{2} \tag{3}
\end{equation*}
$$

for every bi-ideal B of S, that is, every bi-ideal B of S is a two-sided ideal of S. To show that S is regular, let I be an arbitrary ideal of S. Then (2) implies

$$
\begin{equation*}
I=I S^{2} I . \tag{4}
\end{equation*}
$$

Hence we have $I \subset I S I$ and $I S I \subset I$, because I is a two-sided ideal of S. Consequently

$$
\begin{equation*}
I=I S I \tag{5}
\end{equation*}
$$

for any ideal I of S. This implies that S is regular (cf. Luh [5]). Therefore S is a regular duo semigroup, i.e. S is a semilattice of groups (by Theorem 3 in author's paper [2]).

Theorem 2. A semigroup S is a semilattice of groups if and only if the condition (1) holds for any k bi-ideals B_{1}, \cdots, B_{k} of S (k is a fixed

