8. A Note for Knots and Flows on 3-manifolds

By Gikō Ikegami*) and Dale Rolfsen**)
(Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1971)

H. Seifert shows in [1] (Satz 11) that for any torus knot k in the 3 -sphere S^{3} there is a flow on S^{3} with k as an orbit, and conversely, that if a homotopy 3 -sphere Σ^{3} admits a flow on it so that all orbits are closed then $\Sigma^{3}=S^{3}$ and each orbit is a torus knot.

Here, we consider the following question: For any knot k in S^{3} does there exist a non-singular flow on S^{3} having k as an orbit, allowing for the flow having non-closed orbits? In this paper, we give an affirmative answer to this question.

Manifolds and maps, etc in this paper are assumed to be smooth ($C^{\infty}-$) ones. A flow on a manifold M is a 1-parameter group of transformations $\phi: R \times M \rightarrow M$ (R, the real numbers). $\quad x \in M$ is said to be a singular point if $\phi(t, x)=x$ for all $t \in R . \quad \phi$ is said to be non-singular if there is no singular point. An orbit of ϕ passing x is a subset $\{\phi(t, x) \mid t \in R\}$. If there is $t \neq 0$ such that $\phi(t, x)=x$, the orbit is said to be closed.

Let f be a map of S^{1} into a space M and $p: R \rightarrow S^{1}$ be the usual universal covering defined by $t \mapsto e^{2 \pi t i}$, then we shall denote $f \circ p=\bar{f}$.

Theorem. Let M be an orientable closed 3-manifold and $f: S^{1} \rightarrow M$ be an embedding. Then, there exist a flow $\phi: R \times M \rightarrow M$ and $x \in M$ such that $\phi(t, x)=\bar{f}(t)$ for all $t \in R$.

Proof. Denote the tangent bundle of M by $T(M)$. Since, by [2] (Satz 21), M is parallelizable, we may assume $T(M)=M \times R^{3}$. Consider the ($R^{3}-\{0\}$)-bundle $T(M), \xi: M \times\left(R^{3}-\{0\}\right) \rightarrow M$ over M associated to tangent bundle. We define a map $g: f\left(S^{1}\right) \rightarrow T(M)$ as follows: for $x \in f\left(S^{1}\right), g(x)=d \bar{f} / d t(t)$ where t is any number such that $\bar{f}(t)=x . \quad g$ is well-defined. Since f is an embedding, g is a cross-section of ξ over $f\left(S^{1}\right)$. We will extend g to a cross-section of ξ over M.

We may take a tubular neighborhood U of $f\left(S^{1}\right)$ coordinated as follows;
with

$$
U=\left\{(x, r, \theta) \mid x \in f\left(S^{1}\right), \quad 0 \leqq r \leqq 1, \quad 0 \leqq \theta<2 \pi\right\}
$$

$(x, 0, \theta)=(x, 0,0)$ for all x and θ.
Since $\pi_{1}\left(R^{3}-\{0\}\right) \cong \pi_{1}\left(S^{2}\right)=0$, we have a homotopy F of $q \circ g$ as follows, where q is the projection into the second factor $M \times\left(R^{3}-\{0\}\right) \rightarrow R^{3}-\{0\}$:

[^0]
[^0]: *) Kōbe University.
 **) The University of British Columbia.

