8. A Note for Knots and Flows on 3-manifolds

By Gikō Ikegami*) and Dale Rolfsen**)

(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1971)

H. Seifert shows in [1] (Satz 11) that for any torus knot k in the 3-sphere S^3 there is a flow on S^3 with k as an orbit, and conversely, that if a homotopy 3-sphere Σ^3 admits a flow on it so that all orbits are closed then $\Sigma^3 = S^3$ and each orbit is a torus knot.

Here, we consider the following question: For any knot k in S^3 does there exist a non-singular flow on S^3 having k as an orbit, allowing for the flow having non-closed orbits? In this paper, we give an affirmative answer to this question.

Manifolds and maps, etc in this paper are assumed to be smooth $(C^{\infty}$ -) ones. A flow on a manifold M is a 1-parameter group of transformations $\phi: R \times M \to M$ (R, the real numbers). $x \in M$ is said to be a singular point if $\phi(t,x)=x$ for all $t \in R$. ϕ is said to be non-singular if there is no singular point. An orbit of ϕ passing x is a subset $\{\phi(t,x) \mid t \in R\}$. If there is $t \neq 0$ such that $\phi(t,x)=x$, the orbit is said to be closed.

Let f be a map of S^1 into a space M and $p:R\to S^1$ be the usual universal covering defined by $t\mapsto e^{2\pi ti}$, then we shall denote $f\circ p=\tilde{f}$.

Theorem. Let M be an orientable closed 3-manifold and $f: S^1 \rightarrow M$ be an embedding. Then, there exist a flow $\phi: R \times M \rightarrow M$ and $x \in M$ such that $\phi(t, x) = \tilde{f}(t)$ for all $t \in R$.

Proof. Denote the tangent bundle of M by T(M). Since, by [2] (Satz 21), M is parallelizable, we may assume $T(M) = M \times R^3$. Consider the $(R^3 - \{0\})$ -bundle T(M), $\xi : M \times (R^3 - \{0\}) \to M$ over M associated to tangent bundle. We define a map $g: f(S^1) \to T(M)$ as follows: for $x \in f(S^1)$, $g(x) = d\tilde{f}/dt(t)$ where t is any number such that $\tilde{f}(t) = x$. g is well-defined. Since f is an embedding, g is a cross-section of ξ over $f(S^1)$. We will extend g to a cross-section of ξ over M.

We may take a tubular neighborhood U of $f(S^i)$ coordinated as follows;

$$U = \{(x, r, \theta) \mid x \in f(S^1), 0 \le r \le 1, 0 \le \theta < 2\pi\}$$

with

$$(x,0,\theta)=(x,0,0)$$
 for all x and θ .

Since $\pi_1(R^3-\{0\})\cong \pi_1(S^2)=0$, we have a homotopy F of $q\circ g$ as follows, where q is the projection into the second factor $M\times (R^3-\{0\})\to R^3-\{0\}$:

^{*)} Kōbe University.

^{**)} The University of British Columbia.