3. A Note on Artinian Subrings

By Motoshi Hongan,*' Takasi NAGAHARA,**' and Hisao TOMINAGA**'

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1971)

Throughout, A will represent a ring with the identity element 1, J(A) the radical of A, and a subring of A will mean one containing 1. If S is a subset of A, $V_A(S)$ means the centralizer of S in A. A left A-module M is always unital and denoted by ${}_AM$.

The purpose of this note is to prove the following:

Theorem 1. Let B be a subring of A such that ${}_{B}A$ is f.g. (finitely generated), and T a left Artinian subring of A containing B. Let $\overline{T} = T/J(T)$, and $\overline{B} = B + J(T)/J(T)$. If $\overline{T} = \overline{B} \cdot V_{\overline{T}}(\overline{B})$ and the left \overline{T} -module $\overline{A} = A/J(T)A$ is faithful then B is left Artinian.

Our theorem contains evidently D. Eisenbud [3; Theorem 1b)] and draws out J.-E. Björk [2; Theorem 3.4] as an easy corollary.

Lemma 1. Let $M = Au_1 + Au_2 + \cdots + Au_n$ be a unital A-A-module such that $Au_i = u_iA$ and u_1 is left A-free. If for every non-zero ideal a of A there holds aM = M, then A is two-sided simple.

Proof. Without loss of generality, we may assume that $M \neq Au_1$ $+ \cdots + Au_{i-1} + Au_{i+1} + \cdots + Au_n$ for each $1 < i \le n$. We shall prove then by induction $M = Au_1 \oplus \cdots \oplus Au_n$, which implies at once that A is twosided simple. We set $M_k = Au_1 + \cdots + Au_k$ for $1 \le k \le n$. Evidently, $a_n = \{a \in A \mid au_n \in M_{n-1}\}$ is an ideal of A. If a_n is non-zero then $M = a_n M$ $= M_{n-1}$. This contradiction proves $M = M_{n-1} \oplus Au_n$. Next, assume that $M = M_k \oplus Au_{k+1} \oplus \cdots \oplus Au_n$ has been proved. It will be easy to see that $M_k \neq Au_1 + \cdots + Au_{i-1} + Au_{i+1} + \cdots + Au_k$ for each $1 < i \le k$. If α is a non-zero ideal of A then $aM_k \oplus au_{k+1} \oplus \cdots \oplus au_n = M_k \oplus Au_{k+1} \oplus \cdots \oplus Au_n$ implies at once $aM_k = M_k$. Hence, by the first step, we obtain M_k $= M_{k-1} \oplus Au_k$, which completes the induction.

Proposition 1. Let $A = A_1 \oplus \cdots \oplus A_n$, where A_i is a two-sided simple [Artinian simple] ring with the identity element e_i . Let B be a subring of A such that ${}_{B}A$ is f.g. If $A = B \cdot V_A(B)$ then $V_A(B) = V_1$ $\oplus \cdots \oplus V_n$ and $B = B_1 \oplus \cdots \oplus B_k$ ($k \le n$), where V_i is Artinian simple and B_i is two-sided simple [Artinian simple].

Proof. At first, we shall prove the case $A = A_1$. Evidently, $A = Bv_1 + \cdots + Bv_s$ with $v_1 = 1$ and $v_2, \cdots, v_s \in V_A(B)$. As we can easily

^{*)} Tsuyama College of Technology.

^{**)} Okayama University.