2. A Quadratic Extension

By Takasi NAGAHARA
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1971)

Throughout this paper A will be a commutative ring with an identity element 1, and B a subring of A containing the identity element 1 of A.

In [2], K. Kishimoto proved a theorem concerning quadratic extensions of commutative rings which is as follows: Assume that B contains a field of characteristic $\neq 2$ (containing 1). Let A=B+Bd and $d^2 \in B$. Let A be B-projective and $\{1 \otimes 1, 1 \otimes d\}$ a free B_M -basis of A_M for every maximal ideal M of B where B_M is a localization of B at M and $A_M=B_M\otimes_B A$. Then, A/B is a Galois extension with a Galois group of order 2 if and only if d^2 is inversible in B.

The purpose of this note is to prove the following theorem which contains the above Kishimoto's result.¹⁾

Theorem. Let $A=B+Bd\supseteq B$ and $d^2\in B$. Then, A/B is a Galois extension if and only if $\{1,d\}$ is a free B-basis of A and $2\cdot 1$, d^2 are inversible in B.

First we shall prove the following

Lemma 1. Let $A=B+Ba\supseteq B$, and let A/B be a Galois extension with a Galois group \mathfrak{G} . Then

- (1) S is of order 2.
- (2) For $\sigma \neq 1 \in \mathfrak{G}$, $a \sigma(a)$ is inversible in A.
- (3) $\{1,a\}$ is a free B-basis of A.
- (4) If $a^2 = b_0 + b_1 a$ $(b_0, b_1 \in B)$ then $2a b_1$ is inversible in A.

Proof. Let $\sigma \rightleftharpoons 1 \in \mathfrak{G}$. We suppose that $a-\sigma(a)$ is not inversible in A. Then there exists a maximal ideal M_0 of A such that $M_0 \ni a-\sigma(a)$. For an arbitrary element u+va of A ($u,v\in B$), we have $u+va-\sigma(u+va)=v(a-\sigma(a))\in M_0$. This contradicts to the result of [1, Theorem 1.3 (f)]. Hence $a-\sigma(a)$ is inversible in A. If r+sa=0 ($r,s\in B$) then $r+s\sigma(a)=0$; whence $s(a-\sigma(a))=0$ which implies s=0 and r=0. This shows that $\{1,a\}$ is a free B-basis of A. Let n be the order of \mathfrak{G} . Then by [1, Theorem 1.3 (e)], $A\otimes_B A$ is a free $(A\otimes 1)$ -module of rank n. Since $A\otimes A=(A\otimes 1)(1\otimes 1)+(A\otimes 1)(1\otimes a)$, it follows that n=2. Then $a+\sigma(a)$, $a\sigma(a)\in B$, and $a^2=(a+\sigma(a))a-a\sigma(a)$. Hence if $a^2=b_1a+b_0$

¹⁾ Let A=B+Bd. Then, it is proved easily that $\{1,d\}$ is a free B-basis of A if and only if $\{1\otimes 1, 1\otimes d\}$ is a free B_M -basis of A_M for every maximal ideal M of B.