1. Even Maps from Spheres to Spheres

By Juno MUKAI

College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M.J.A., Jan. 12, 1971)

1. Introduction. The *n*-sphere S^n is the set of vectors in Euclidean space R^{n+1} having unit length. An even map f from S^n to a topological space X is a continuous map preserving base points which satisfies f(-x) = f(x) for any $x \in S^n$.

In this note we deal with the general problem of representing homotopy classes by even maps from spheres to spheres.

To state the results, we denote by \widetilde{KO}^* the functor in the real K-theory [2]. Suppose $k \equiv 0, 1, 2$ or $4 \mod 8$, then we have

Theorem 1.1. An element α of the homotopy group $\pi_{n+k}(X)$ of a finite CW-complex X which induces non-zero homomorphism α^* : $\widetilde{KO}^n(X) \rightarrow \widetilde{KO}^n(S^{n+k}) \ (\approx Z \text{ or } Z_2)$ can not be represented by any even map in the following cases:

i) $n \equiv 2 \mod 4$ if $k \equiv 1 \mod 8$,

ii) $n \equiv 0$ or $3 \mod 4$ if $k \equiv 2 \mod 8$,

iii) $n \equiv 0 \mod 2$ if $k \equiv 0 \mod 4$.

By the methods of H. Toda and J. F. Adams, we have a family of the elements $\mu_{s,n}$ of $\pi_{n+k}(S^n)$ if k=8s+1 and $n\geq 3$. We note that $\mu_{0,n}$ is the (n-2)-fold suspension $\eta_n=S^{n-2}\eta_2$, where η_2 is the homotopy class of the Hopf map from S^3 to S^2 .

Corollary 1.2. Suppose k=8s+1 and $n\geq 3$, then

i) $\mu_{s,n}$ can not be represented by any even map if $n \not\equiv 2 \mod 4$,

ii) $\mu_{s,n}\eta_{n+k}$ can not be represented by any even map if $n \equiv 0$ or $3 \mod 4$.

By Theorem 2 of [8], η_{n-1} can not be represented by any polynomial map from S^n to S^{n-1} if n is a power of 2. Since a form of even degree is an even map, Corollary 1.2 partially generalizes the above result of R. Wood.

We denote by ι_n the homotopy class of the identity of S^n and by ν_n the generator of the 2-component of $\pi_{n+3}(S^n) \approx Z_{24}$ for $n \ge 5$.

Theorem 1.3. i) Suppose $n+k\equiv 2 \mod 4$, then $\alpha \eta_{n+k}$ and $\alpha \eta_{n+k}^2$ are represented by even maps for any $\alpha \in \pi_{n+k}(S^n)$ respectively.

ii) Suppose $n+k \equiv 1 \mod 4$ and $n \geq k+5$ and let $\alpha \in \pi_{n+k}(S^n)$ be of order 2, then we have the following.

a) Any element of the Toda bracket $\{\alpha, 2\iota_{n+k}, \eta_{n+k}\}$ is represented by an even map.