37. Dynamical System with Ergodic Partitions

By Yoshitaka Yokoi

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1971)

Introduction. In this paper we give a sufficient condition for a dynamical system on a compact metric Lebesque space to be ergodic. The following argument is essentially described in the work of Sinai [2]. The difference is the consideration of "measurable set" in place of "k-dimensional submanifold".

- 0. Notations. We denote by (M, \mathfrak{B}, μ) a Lebesque space with σ -algebra \mathfrak{B} and a measure μ ; $\mu(M) = I$. We suppose that M is a compact metric space with distance $d(\cdot, \cdot)$.
- (M, T, μ) is a dynamical system, i.e., T is an automorphism of (M, \mathfrak{B}, μ) .
- $\mathfrak N$ denotes the trivial subalgebra consisting of sets of measure zero or of measure one, and $\mathfrak S(A_\alpha)$ the σ -algebra generated by the system of measurable sets $\{A_\alpha\}$.
 - $\mathfrak{S}|_A$ means the restriction of a σ -subalgebra \mathfrak{S} to a measurable set A.
 - 1. Expansive partitions and contractive partitions.

Definition 1.1. Let $\xi = \{C_{\xi}\}\$ be a partition of M into measurable sets $\{C_{\xi}\}\$. ξ is called to be T-expansive (T-contractive), if for two points $x,y\in M$ which belong to the same element C_{ξ} of ξ $d(T^nx,T^ny)$ $(d(T^{-n}x,T^{-n}y))$ converges to zero as $n\to\infty$.

- Theorem 1.1. Let ξ, η be two partitions of M. If one is T-expansive and the other is T-contractive then any T-invariant summable function is $\mathfrak{S}(\xi) \cap \mathfrak{S}(\eta)$ -measurable.
- 2. The partition of M which is not necessarily measurable may be measurable, if it is considered locally in some sense.

Definition 2.1. $\mathfrak{U}=\{U_k|k=1,2,\cdots\}$ is called a *local basis* of M, if 1) $\mathfrak{S}(\mathfrak{U})=\mathfrak{B}$, 2) for any measurable set A such that $0<\mu(A)<1$ there exists some $U_k\in\mathfrak{U}$ which satisfies;

$$\mu(A \cap U_k) \cdot \mu(A^c \cap U_k) \neq 0$$

Definition 2.2. Let $\mathfrak{U}=\{U_k|k=1,2,\cdots\}$ be a local basis of M. $\{(U_k,\xi_k)|k=1,2,\cdots\}$ is called a *measurable fibre structure* (m.f.s.), if

- 1) ξ_k is a measurable partition of U_k ,
- 2) for almost all $x \in U_k \cap U_l$, $C_{\xi_k}(x) \cap U_l = C_{\xi_l}(x) \cap U_k$, where $C_{\xi_k}(x)$ is an element of ξ_k which contains x.

An m.f.s. $\{(U_k, \xi_k)|k=1, 2, \cdots\}$ defines an equivalence relation \sim and hence induces a partition of M. The relation $x \sim y$ for $x, y \in M$ means that there exist $U_{k_1}, \cdots, U_{k_j} \in \mathbb{I}$ such that $x \in U_{k_1}, y \in U_{k_j}$ and