35. Surgery and Singularities in Codimension Two

By Yukio MATSUMOTO University of Tokyo

(Comm. by Kunihiko Kodaira, M. J. A., Feb. 12, 1971)

1. Statement of results. Throughout this paper, W^{m+2} denotes a compact connected 1-connected PL m+2-manifold which is a Poincaré complex of formal dimension m. A closed PL submanifold L^m of W^{m+2} with codimension 2 is called a homotopy spine if the inclusion map $i\colon L^m\to W^{m+2}$ is a homotopy equivalence. In this paper, we shall formulate an obstruction theory to finding locally flat homotopy spines of W^{m+2} . The problem has been solved in odd dimensional case [1]. Here we shall consider the case where m is even: $m=2n\geq 6$. An additional condition (H) on W^{2n+2} is also assumed, which is a generalization of simplicity condition for knots [3].

There exist an S^1 -fibration $\xi \xrightarrow{p} W$ and a map $\phi : \partial W^{(n)} \to \xi$, where $\partial W^{(n)}$ is the n-skeleton of some triangulation of ∂W , such that (i)

(H) ϕ is n-connected and (ii) the diagram $\partial W^{(n)} \xrightarrow{\phi} \xi$ is homotopically

commutative.

Note that $\pi_1(\partial W) \cong \pi_1(\xi)$ is a cyclic group. Denote this group in a multiplicative way by $J_q = \{t^m \mid m \in \mathbb{Z}\}/(t^q), \ q = 0, 1, 2, \cdots$. In § 3, a covariant functor $P_{2n}(*)$ from the category {cyclic groups, onto homomorphisms} to the category {abelian groups, onto homomorphisms} is algebraically introduced. Our results are the following:

Theorem 1.1. W^{2n+2} admits a locally flat homotopy spine if and only if a well defined obstruction element $\eta(W) \in P_{2n}(\pi_1 \partial W)$ is equal to zero.

The groups $P_{2n}(J_q)$ have some interesting properties.

Theorem 1.2. (i) $P_{2n}(J_0) \cong C_{2n-1}$ (Levine's knot cobordism group of (2n-1,2n+1)-knots [3]), where J_0 is an infinite cyclic group. (ii) $P_{2n}(1) \cong P_{2n}(Kervaire-Milnor's surgery obstruction group [2])$, where 1 stands for a trivial group. (iii) $P_{2n+4}(J_q) = P_{2n}(J_q)$.

A submanifold L^{2n} is said to be 1-flat if it is locally flat except at a finite set of points. The obstruction $\eta(W)$ can be described in terms of singularities of 1-flat homotopy spines. We have proved in [1] that W^{2n+2} admits a 1-flat homotopy spine L^{2n} . Define the singularity at $p \in L$ by a (2n-1,2n+1)-knot $\sigma_p(L) = (Lk(p,L),Lk(p,W))$. The total singularity of L^{2n} in W is the summation $\sigma(L) = \sum_{p \in L} \sigma_p(L)$ in Levine's