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1. Statement of results. Throughout this paper, W /2 denotes
a compact connected 1-connected PL m+ 2-manifold which is a Poincar6
complex of formal dimension m. A closed PL submanifold L of
W/2 with codimension 2 is called a homotopy spine if the inclusion
map i" L-W+ is a homotopy equivalence. In this paper, we shall
formulate an obstruction theory to finding locally fiat homotopy spines
of W+2. The problem has been solved in odd dimensional case [1].
Here we shall consider the case where m is even" m--2n>_ 6. An ad-
ditional condition (H) on W2n+2 is also assumed, which is a generaliza-
tion of simplicity condition or knots [3].

There exist an S-fibration
p
W and a map " 3W(n)-$, where

W() is the n-skeleton of some triangulation of W, such that (i)
(H) is n-connected and (ii) the diagram W() #-. is homotopically

eommtatie.
Note that rl(OW)-z() is a eyelie group. Denote this group in

a multiplieative way by Jq=- {tm m 2"}/(tq), q= O, 1, , In , a
eovariant funetor P(.) from the category {cyclic groups, onto homo-
morphisms} to the eategory {abelian groups, onto homomorphisms} is
algebraically introduced. Our results are the following:

Theorem 1.1. W2n+2 admits a locally fiat homotopy spine if and
only if a well defined obstruction element (W) e P(zr3W) is equal to
zero.

The groups P(J) have some interesting properties.
Theorem 1.2. (i) P2n(Jo) - C2n_1 (Levine’s knot cobordism group

of (2n-- 1, 2n q- 1)-knots [3]), where Jo is an infinite cyclic group. (ii)
P2n(1)-P2n(Kervaire-Milnor’s surgery obstruction group [2]), where 1
stands for a trivial group. (iii) P2n+4(Jq)--P.n(Jq).

A submanifold L is said to be 1-fiat if it is locally flat except at
a finite set of points. The obstruction (W)can be described in terms
of singularities ot 1-flat homotopy spines. We have proved in [1] that
W+ admits a 1-flat homotopy spine L. Define the singularity at
p L by a (2n--l, 2n+ 1)-knot a(L)=(Lk(p, L), L(p, W)). The total
singularity of L in W is the summation a(L)--,e a(L) in Levine’s


