33. On Semigroups whose Ideals are All Globally Idempotent

By Nobuaki KUROKI Tokyo Gakugei University

(Comm. by Kenjiro Shoda, M. J. A., Feb. 12, 1971)

Let X and Y be subsets of a semigroup S. Then we put

$$(Y:X) = \{s \in S : xs \in Y \text{ for all } x \in X\}$$

 $(Y:X)^* = \{s \in S : sx \in Y \text{ for all } x \in X\}.$

Theorem 1. The following statements on a semigroup S are equivalent:

- (1) $X^2 = X$ for every ideal X of S.
- (2) $X \cap Y = XY$ for every ideals X and Y of S.
- (3) $(Y:X) \cap X = X \cap Y$ for every ideals X and Y of S.
- (4) $(Y:X)^* \cap X = X \cap Y$ for every ideals X and Y of S.
- (5) $(Y:X) \cap Z = Y \cap Z$ for every ideals X, Y and Z of S such that $Z \subseteq X$.
- (6) $(Y:X)^* \cap Z = Y \cap Z$ for every ideals X, Y and Z of S such that $Z \subseteq X$.
 - (7) $R \cap X \subseteq XR$ for every right ideal R and every ideal X of S.
 - (8) $L \cap X \subseteq LX$ for every left ideal L and every ideal X of S.
- (9) $R \subseteq XR$ for every right ideal R and every ideal X of S such that $R \subseteq X$.
- (10) $L\subseteq LX$ for every left ideal L and every ideal X of S such that $L\subseteq X$.
- (11) $(R:X) \cap X \subseteq X \cap R$ for every right ideal R and every ideal X of S.
- (12) $(L:X)^* \cap X \subseteq L \cap X$ for every left ideal L and every ideal X of S.