30. On Dedekindian l-Semigroups and its Lattice-Ideals

By Kentaro Murata
Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro Shoda, M. J. A., Feb. 12, 1971)

Our main purpose of the present note is to study some lattice-ideals of Dedekindian l-semigroups. The notation and terminology are those of [1].

1. Let S be an Artinian l-semigroup considered in [1]. An integral element q of S is called primary if the conditions $x y \leq q, x \nless q$ (x, $y \in I_{G}$) imply $y^{\rho} \leq q$ for some positive integer ρ. Then it can be proved that $p \equiv \sup \left\{x \in I_{G} \mid x^{\rho} \leq q\right.$ for some positive integer $\left.\rho\right\}$ is a prime element in I. Now let $\mathfrak{B}=\{v\}$ be a system of valuations with the properties (A), (B) and (C) in [1]. Then for any fixed $v \in \mathfrak{B}$ and for a primary element q with $q \leq p(v)$ (cf. [1; §4]), we have that $v(q) \neq 0$ and $v^{\prime}(q)=0$ for every $v^{\prime} \in \mathfrak{B}$ with $v^{\prime} \neq v$. By using the above fact and the results in [1; §4], we can prove that, if p is a low prime element of I, the set of the minimal primes less than p consists of infinite many members.

Let p be prime and be not low in I. If we take a valuation $v \in \mathfrak{B}$ such that $v(p)>0$, then since $v(p) \geq v(p(v))=1$, we have $p(v) \geq p$. Now we suppose that $v(p(v))<v(p)$. Let z be an element such that $z<p, z \in I_{G}$ and $v(z)=v(p)$, and let u be an element such that $u \leq p(v), u \in I_{G}$ and $v(u)=1$. Then we can take an element u^{\prime} such as $z u^{-v(p)} u^{\prime}=u_{0} \leq e$ and $v\left(u_{0}\right)=0$. By using this and the property " $p\left(v_{1}\right) \neq p\left(v_{2}\right)$ for $v_{1} \neq v_{2}$ in $\mathfrak{B} "$, we can show that there exists one and only one valuation v such that $p(v)=p, v \in \mathfrak{B}$.

An Artinian l-semigroup is called Dedekindian if it has no low element different from e. Then we obtain that any Dedekindian l semigroup S forms an l-group, and every element a of S is factored into a product of a finite number of primes $p(v): a=\prod_{v \in \mathfrak{B}} p(v)^{v(a)}$, and the factorization is uniquely determined apart from its commutativity. In other words S is the restricted direct product of the cyclic groups $\{p(v)\}, v \in \mathfrak{B}$. Now let S be an Artinian l-semigroup. Then the following three conditions are equivalent:
(1) S is Dedekindian.
(2) Each minimal prime of I is maximal.
(3) Any two distinct minimal primes are coprime.

Ad (1) $\Rightarrow(2)$: Let p be a minimal prime of I. Then p is written as p $=p(v)$ for some $v \in \mathfrak{B}$. Suppose that there exists an element a such as $p<a \leq e$. Then $v(p)>v(\alpha)$ and $0 \leq v^{\prime}(\alpha) \leq v^{\prime}(p)=0$ for $v^{\prime} \neq v, v^{\prime} \in \mathfrak{B}$. This

