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71. A Note on the Number of Generators of an Ideal
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Department of Mathematics, Aoyama Gakuin University

(Comm. by Kenjiro SHODA, M. J. A.,, March 12, 1971)

Through this note, we mean by a ring a commutative ring with
identity 1. Let R be a noetherian ring and A be an ideal of R. O.
Forster showed that, if AR, is generated by at most r elements for
any maximal ideal M of R, then A is generated by at most r»+ Alt. R
elements, where Alt. R is the Krull dimension of R (cf. O. Forster [1]).
In this note, we shall study the number of generators of an ideal and
improve the above Forster’s result, that is:

Theorem 1. Let R be a ring and A be a finitely generated ideal
of R. Assume that: (1) there are only a finite number of maximal
ideals of R which contain A and (2) AR, is generated by at most r ele-
ments for any maximal ideal M of R. Then A is generated by at most
r+1 elements.

Theorem 2. Let R be a noetherian ring and A be an ideal of R
such that Alt. R/A<oco. Assume AR, is generated by at most r ele-
ments for any maximal ideal M of R. Then A is generated by at most
r+Alt. R/A+1 elements.

To prove these theorems we need the following lemmas.

Lemma 1. Let R be a ring. Assume 0=Q,N.--NQ, be an
wrredundant decomposition of zero ideal of R (not necessarily primary
decomposition). If Q;+Q,;,=R (j=2,---,n), then Q, is a principal ideal.

Proof. Since Q,PQ,Q;---Q,=R,wecantakercQ,andycQ,- --Q,
such that x4+y=1. For any element z € Q,, 2=z« +2y=22, so we have
Q,=xR.

Lemma 2. Let R be a ring and A be a finitely generated ideal
which contains an ideal B. If AR,=BR, for any maximal ideal M
which contains A, then A=B or A=xR+ B for some element x of A.

Proof. Since A is finitely generated, AR, =BR, implies B: A¢M
for any maximal ideal M which contains A. So we have (AN(B: A)R
=BR,, for any maximal ideal M of R, hence B=AN(B:A4). IfB: A
=R then B=A. If B: A#R then A+(B: A)=R since B: A¢ M for
any maximal ideal M which contains A. So Lemma 1 implies A=B
+ xR for some z ¢ A by considering R/B and A/B.

Lemma 3. Let R bea ring and A be an ideal of R. Assume that:
(1) there are only a finite number of maximal ideals M,, - - -, M, which
contain A and (2) ARy, is generated by at most r elements for every .



