71. A Note on the Number of Generators of an Ideal

By Yasuo Kinugasa
Department of Mathematics, Aoyama Gakuin University

(Comm. by Kenjiro Shoda, m. J. A., March 12, 1971)

Through this note, we mean by a ring a commutative ring with identity 1. Let R be a noetherian ring and A be an ideal of R. O. Forster showed that, if $A R_{M}$ is generated by at most r elements for any maximal ideal M of R, then A is generated by at most $r+$ Alt. R elements, where Alt. R is the Krull dimension of R (cf. O. Forster [1]). In this note, we shall study the number of generators of an ideal and improve the above Forster's result, that is:

Theorem 1. Let R be a ring and A be a finitely generated ideal of R. Assume that: (1) there are only a finite number of maximal ideals of R which contain A and (2) $A R_{M}$ is generated by at most r elements for any maximal ideal M of R. Then A is generated by at most $r+1$ elements.

Theorem 2. Let R be a noetherian ring and A be an ideal of R such that Alt. $R / A<\infty$. Assume $A R_{M}$ is generated by at most r elements for any maximal ideal M of R. Then A is generated by at most $r+$ Alt. $R / A+1$ elements.

To prove these theorems we need the following lemmas.
Lemma 1. Let R be a ring. Assume $0=Q_{1} \cap \cdots \cap Q_{n}$ be an irredundant decomposition of zero ideal of R (not necessarily primary decomposition). If $Q_{1}+Q_{j}=R(j=2, \cdots, n)$, then Q_{1} is a principal ideal.

Proof. Since $Q_{1} \oplus Q_{2} Q_{3} \cdots Q_{n}=R$, we can take $x \in Q_{1}$ and $y \in Q_{2} \cdots Q_{n}$ such that $x+y=1$. For any element $z \in Q_{1}, z=z x+z y=z x$, so we have $Q_{1}=x R$.

Lemma 2. Let R be a ring and A be a finitely generated ideal which contains an ideal B. If $A R_{M}=B R_{M}$ for any maximal ideal M which contains A, then $A=B$ or $A=x R+B$ for some element x of A.

Proof. Since A is finitely generated, $A R_{M}=B R_{M}$ implies $B: A \not \subset M$ for any maximal ideal M which contains A. So we have $(A \cap(B: A)) R_{M}$ $=B R_{M}$ for any maximal ideal M of R, hence $B=A \cap(B: A)$. If $B: A$ $=R$ then $B=A$. If $B: A \neq R$ then $A+(B: A)=R$ since $B: A \not \subset M$ for any maximal ideal M which contains A. So Lemma 1 implies $A=B$ $+x R$ for some $x \in A$ by considering R / B and A / B.

Lemma 3. Let R be a ring and A be an ideal of R. Assume that: (1) there are only a finite number of maximal ideals M_{1}, \cdots, M_{n} which contain A and (2) $A R_{M_{i}}$ is generated by at most r elements for every i.

