58. Prime Ideals in the Dual Objects of Locally Compact Groups

By Nobuhiko TATSUUMA
Department of Mathematics, Kyôto University
(Comm. by Kinjirô Kunugi, M. J. A., March 12, 1971)

1. Let G be a locally compact group, and Ω be the set of equivalence classes of unitary representations of G, dimensions of which are lower than a sufficiently large fixed cardinal number (for instance the large one of countable infinite or $\dim L^2(G)$). Then we can introduce a product operation \otimes in Ω by the Kronecker product of representations, and the addition operation \oplus in Ω by the direct sum of representations (We allow infinite discrete direct sum). So that, a ring-like structure is given in Ω .

Now we shall call a subset \Im an ideal in \varOmega when

- i) \Im is closed with respect to the operation \oplus .
- ii) If ω is in \Im then any subrepresentation of ω is in \Im .
- iii) For any ω in \Im and any ω_0 in Ω , $\omega_0 \otimes \omega$ is in \Im .

Moreover, we shall call an ideal \Im in Ω is *prime* when

iv) If ω_1 , ω_2 are both disjoint to any representations in \Im , in the sense of G. W. Mackey [1], then $\omega_1 \otimes \omega_2$ too.

As is well-known, Kronecker product of any ω in Ω and the regular representation \Re is unitary equivalent to a multiple of \Re . So that, the set \Im_{\Re} of classes of all subrepresentations of multiples of \Re gives the smallest non-empty (but in general not prime) ideal in Ω .

On the other hand, in the previous paper [2], we gave examples of non-trivial operator fields $\{T(\omega)\}$ over Ω which commute with the both of operations \otimes and \oplus , and $T(\Re)=0$ (p. 225, Example 3 and p. 226, Example 5). There exists close connection between such an operator field and non-trivial prime ideal.

The purpose of this paper is to show this connection, and to give an example of non-trivial prime ideal in Ω as an extension of the examples in the paper [2]. And this leads to a new proof of that every unitary irreducible representations of compact group are finite dimensional.

2. Now we shall give the correspondence between non-trivial prime ideals in Ω and a family of non-zero operator fields $\{T(\omega)\}$ over Ω which commute with the both of operations \otimes and \oplus and $T(\Re)=0$, under the additional condition, that $T(\omega)^{-1}(0)$ is G-invariant for any ω in Ω .