55. A Note on Approximate Dimension

By Shozo Koshi and Yasuji Takahashi
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1971)

Mityagin has characterized nuclear spaces by the approximate dimension. In an F-space E, namely, E is nuclear iff the approximate dimension of E is zero. (It is known that the approximate dimension is zero if it is finite.) In this note, we shall characterize a Schwarz space by means of metrical dimensions of the same kind. For this purpose, we shall define more general approximate dimensions in an F-space E. An F-space E is called a Schwarz space if for every continuous semi-norm $p(x)$, there exists a continuous semi-norm $q(x)$ such that $U_{q}=\{x \in E, q(x) \leqq 1\}$ is totally bounded by the semi-norm $p(x)$. For subsets S and K of E, we shall define $N(K, \varepsilon S)$ as usual:

$$
N(K, \varepsilon S)=\inf \left\{N: \bigcup_{k=1}^{N}\left(x_{k}+\varepsilon S\right) \supset K, x_{k} \in E ; k=1,2, \cdots, N\right\}
$$

for a real number $\varepsilon>0$.
An F-space E is a Schwarz space iff for every continuous seminorm $p(x)$, there exists $q(x)$ such that $N\left(U_{q}, \varepsilon U_{p}\right)<+\infty$ for all $\varepsilon>0$.

Now, we shall consider two finite valued non-decreasing functions Φ, Ψ, each of which is defined on a sufficient large part of real numbers (i.e. $\left[\alpha, \infty\right.$) for some α), such that $\lim _{t \rightarrow \infty} \Phi(t)=\lim _{t \rightarrow \infty} \Psi(t)=+\infty$. Let $\left\{U_{n}\right\}_{n=1,2, \ldots}$ be any fundamental system of convex neighborhoods of zero in an F-space E. We shall define now another approximate dimension of E by Φ and Ψ as follows:

$$
\rho_{\Phi, \Psi}(E)=\sup _{k} \inf _{m} \varlimsup_{\epsilon \rightarrow 0} \frac{\Phi\left(N\left(U_{m}, \varepsilon U_{k}\right)\right)}{\Psi(1 / \varepsilon)} .
$$

Since $\bigcap_{n=1}^{\infty} U_{n}=\{0\}$, it is easy to see that $\rho_{Q, \Psi}$ is determined uniquely by the topology of E (i.e. independent of the choice of $\left\{U_{n}\right\}_{n=1,2, \ldots}$).

Theorem. An F-space E is a Schwarz space iff there exist nondecreasing finite valued functions Φ and Ψ with $\lim _{t \rightarrow \infty} \Phi(t)=\lim _{t \rightarrow \infty} \Psi(t)$ $=+\infty$ such that $\rho_{\varnothing, \Psi}(E)<+\infty$.

Proof. It is easy to see that if $\rho_{\Phi, w}(E)<+\infty$, then E is a Schwarz space. Suppose that E is a Schwarz space. Let $\left\{U_{n}\right\}_{n=1,2, \ldots}$ be a fundamental system of nbd. of zero in E which consists of convex sets. By assumption, we can find $k_{n}>n$ such that $N\left(U_{k_{n}}, \varepsilon U_{n}\right)<\infty$ for all $\varepsilon>0$. Let us define

$$
f_{n}(1 / \varepsilon)=N\left(U_{k_{n}}, \varepsilon U_{n}\right) \quad \text { for } \quad 0<1 / \varepsilon<\infty
$$

$f_{n}(1 / \varepsilon)$ is a non-decreasing non-negative function with respect to $1 / \varepsilon$ and greater than 1. Let m be a positive integer. For $\varepsilon>0$ with $m-1$

